-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathfjsp_env_various_op_nums.py
500 lines (374 loc) · 23.4 KB
/
fjsp_env_various_op_nums.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import numpy as np
import numpy.ma as ma
import copy
import sys
from fjsp_env_same_op_nums import EnvState
class FJSPEnvForVariousOpNums:
"""
a batch of fjsp environments that have various number of operations
Attributes:
"""
def __init__(self, n_j, n_m):
self.number_of_jobs = n_j
self.number_of_machines = n_m
self.old_state = EnvState()
self.op_fea_dim = 10
self.mch_fea_dim = 8
def set_static_properties(self):
"""
define static properties
"""
self.multi_env_mch_diag = np.tile(np.expand_dims(np.eye(self.number_of_machines, dtype=bool), axis=0),
(self.number_of_envs, 1, 1))
self.env_idxs = np.arange(self.number_of_envs)
self.env_job_idx = self.env_idxs.repeat(self.number_of_jobs).reshape(self.number_of_envs, self.number_of_jobs)
# [E, N]
self.mask_dummy_node = np.full(shape=[self.number_of_envs, self.max_number_of_ops],
fill_value=False, dtype=bool)
cols = np.arange(self.max_number_of_ops)
self.mask_dummy_node[cols >= self.env_number_of_ops[:, None]] = True
a = self.mask_dummy_node[:, :, np.newaxis]
self.dummy_mask_fea_j = np.tile(a, (1, 1, self.op_fea_dim))
self.flag_exist_dummy_node = ~(self.env_number_of_ops == self.max_number_of_ops).all()
def set_initial_data(self, job_length_list, op_pt_list):
self.number_of_envs = len(job_length_list)
self.job_length = np.array(job_length_list)
self.number_of_machines = op_pt_list[0].shape[1]
self.number_of_jobs = job_length_list[0].shape[0]
# 异工序数环境并行化
self.env_number_of_ops = np.array([op_pt_list[k].shape[0] for k in range(self.number_of_envs)])
self.max_number_of_ops = np.max(self.env_number_of_ops)
self.set_static_properties()
self.virtual_job_length = np.copy(self.job_length)
self.virtual_job_length[:, -1] += self.max_number_of_ops - self.env_number_of_ops
# [E, N, M]
self.op_pt = np.array([np.pad(op_pt_list[k],
((0, self.max_number_of_ops - self.env_number_of_ops[k]),
(0, 0)),
'constant', constant_values=0)
for k in range(self.number_of_envs)]).astype(np.float64)
self.pt_lower_bound = np.min(self.op_pt)
self.pt_upper_bound = np.max(self.op_pt)
self.true_op_pt = np.copy(self.op_pt)
self.op_pt = (self.op_pt - self.pt_lower_bound) / (self.pt_upper_bound - self.pt_lower_bound + 1e-8)
self.process_relation = (self.op_pt != 0)
self.reverse_process_relation = ~self.process_relation
self.compatible_op = np.sum(self.process_relation, 2)
self.compatible_mch = np.sum(self.process_relation, 1)
self.unmasked_op_pt = np.copy(self.op_pt)
head_op_id = np.zeros((self.number_of_envs, 1))
self.job_first_op_id = np.concatenate([head_op_id, np.cumsum(self.job_length, axis=1)[:, :-1]], axis=1).astype(
'int')
self.job_last_op_id = self.job_first_op_id + self.job_length - 1
self.job_last_op_id[:, -1] = self.env_number_of_ops - 1
self.initial_vars()
self.init_op_mask()
self.op_pt = ma.array(self.op_pt, mask=self.reverse_process_relation)
self.op_mean_pt = np.mean(self.op_pt, axis=2).data
self.op_min_pt = np.min(self.op_pt, axis=-1).data
self.op_max_pt = np.max(self.op_pt, axis=-1).data
self.pt_span = self.op_max_pt - self.op_min_pt
self.mch_min_pt = np.max(self.op_pt, axis=1).data
self.mch_max_pt = np.max(self.op_pt, axis=1)
self.op_ct_lb = copy.deepcopy(self.op_min_pt)
for k in range(self.number_of_envs):
for i in range(self.number_of_jobs):
self.op_ct_lb[k][self.job_first_op_id[k][i]:self.job_last_op_id[k][i] + 1] = np.cumsum(
self.op_ct_lb[k][self.job_first_op_id[k][i]:self.job_last_op_id[k][i] + 1])
self.op_match_job_left_op_nums = np.array([np.repeat(self.job_length[k],
repeats=self.virtual_job_length[k])
for k in range(self.number_of_envs)])
self.job_remain_work = []
for k in range(self.number_of_envs):
self.job_remain_work.append(
[np.sum(self.op_mean_pt[k][self.job_first_op_id[k][i]:self.job_last_op_id[k][i] + 1])
for i in range(self.number_of_jobs)])
self.op_match_job_remain_work = np.array([np.repeat(self.job_remain_work[k], repeats=self.virtual_job_length[k])
for k in range(self.number_of_envs)])
self.construct_op_features()
# shape reward
self.init_quality = np.max(self.op_ct_lb, axis=1)
self.max_endTime = self.init_quality
# old
self.mch_available_op_nums = np.copy(self.compatible_mch)
self.mch_current_available_op_nums = np.copy(self.compatible_mch)
self.candidate_pt = np.array([self.unmasked_op_pt[k][self.candidate[k]] for k in range(self.number_of_envs)])
self.dynamic_pair_mask = (self.candidate_pt == 0)
self.candidate_process_relation = np.copy(self.dynamic_pair_mask)
self.mch_current_available_jc_nums = np.sum(~self.candidate_process_relation, axis=1)
self.mch_mean_pt = np.mean(self.op_pt, axis=1).filled(0)
# construct machine features [E, M, 6]
# construct Compete Tensor : [E, M, M, J]
self.comp_idx = self.logic_operator(~self.dynamic_pair_mask)
# construct mch graph adjacency matrix : [E, M, M]
self.init_mch_mask()
self.construct_mch_features()
self.construct_pair_features()
self.old_state.update(self.fea_j, self.op_mask,
self.fea_m, self.mch_mask,
self.dynamic_pair_mask, self.comp_idx, self.candidate,
self.fea_pairs)
# old record
self.old_op_mask = np.copy(self.op_mask)
self.old_mch_mask = np.copy(self.mch_mask)
self.old_op_ct_lb = np.copy(self.op_ct_lb)
self.old_op_match_job_left_op_nums = np.copy(self.op_match_job_left_op_nums)
self.old_op_match_job_remain_work = np.copy(self.op_match_job_remain_work)
self.old_init_quality = np.copy(self.init_quality)
self.old_candidate_pt = np.copy(self.candidate_pt)
# self.old_pairMessage = np.copy(self.pairMessage)
self.old_candidate_process_relation = np.copy(self.candidate_process_relation)
self.old_mch_current_available_op_nums = np.copy(self.mch_current_available_op_nums)
self.old_mch_current_available_jc_nums = np.copy(self.mch_current_available_jc_nums)
# state
self.state = copy.deepcopy(self.old_state)
return self.state
def reset(self):
self.initial_vars()
self.op_mask = np.copy(self.old_op_mask)
self.mch_mask = np.copy(self.old_mch_mask)
self.op_ct_lb = np.copy(self.old_op_ct_lb)
self.op_match_job_left_op_nums = np.copy(self.old_op_match_job_left_op_nums)
self.op_match_job_remain_work = np.copy(self.old_op_match_job_remain_work)
self.init_quality = np.copy(self.old_init_quality)
self.max_endTime = self.init_quality
self.candidate_pt = np.copy(self.old_candidate_pt)
self.candidate_process_relation = np.copy(self.old_candidate_process_relation)
self.mch_current_available_op_nums = np.copy(self.old_mch_current_available_op_nums)
self.mch_current_available_jc_nums = np.copy(self.old_mch_current_available_jc_nums)
# state
self.state = copy.deepcopy(self.old_state)
return self.state
def initial_vars(self):
self.step_count = 0
self.done_flag = np.full(shape=(self.number_of_envs,), fill_value=0, dtype=bool)
self.current_makespan = np.full(self.number_of_envs, float("-inf"))
self.mch_queue = np.full(shape=[self.number_of_envs, self.number_of_machines,
self.max_number_of_ops + 1], fill_value=-99, dtype=int)
self.mch_queue_len = np.zeros((self.number_of_envs, self.number_of_machines), dtype=int)
self.mch_queue_last_op_id = np.zeros((self.number_of_envs, self.number_of_machines), dtype=int)
self.op_ct = np.zeros((self.number_of_envs, self.max_number_of_ops))
self.mch_free_time = np.zeros((self.number_of_envs, self.number_of_machines))
self.mch_remain_work = np.zeros((self.number_of_envs, self.number_of_machines))
self.mch_waiting_time = np.zeros((self.number_of_envs, self.number_of_machines))
self.mch_working_flag = np.zeros((self.number_of_envs, self.number_of_machines))
self.next_schedule_time = np.zeros(self.number_of_envs)
self.candidate_free_time = np.zeros((self.number_of_envs, self.number_of_jobs))
self.true_op_ct = np.zeros((self.number_of_envs, self.max_number_of_ops))
self.true_candidate_free_time = np.zeros((self.number_of_envs, self.number_of_jobs))
self.true_mch_free_time = np.zeros((self.number_of_envs, self.number_of_machines))
self.candidate = np.copy(self.job_first_op_id)
self.unscheduled_op_nums = np.copy(self.env_number_of_ops)
self.mask = np.full(shape=(self.number_of_envs, self.number_of_jobs), fill_value=0, dtype=bool)
self.op_scheduled_flag = np.zeros((self.number_of_envs, self.max_number_of_ops))
self.op_waiting_time = np.zeros((self.number_of_envs, self.max_number_of_ops))
self.op_remain_work = np.zeros((self.number_of_envs, self.max_number_of_ops))
self.op_available_mch_nums = np.copy(self.compatible_op) / self.number_of_machines
self.pair_free_time = np.zeros((self.number_of_envs, self.number_of_jobs,
self.number_of_machines))
self.remain_process_relation = np.copy(self.process_relation)
self.delete_mask_fea_j = np.full(shape=(self.number_of_envs, self.max_number_of_ops, self.op_fea_dim),
fill_value=0, dtype=bool)
def step(self, actions):
self.incomplete_env_idx = np.where(self.done_flag == 0)[0]
self.number_of_incomplete_envs = int(self.number_of_envs - np.sum(self.done_flag))
chosen_job = actions // self.number_of_machines
chosen_mch = actions % self.number_of_machines
chosen_op = self.candidate[self.incomplete_env_idx, chosen_job]
if (self.reverse_process_relation[self.incomplete_env_idx, chosen_op, chosen_mch]).any():
print(
f'FJSP_Env.py Error from choosing action: Op {chosen_op} can\'t be processed by Mch {chosen_mch}')
sys.exit()
self.step_count += 1
# update candidate
candidate_add_flag = (chosen_op != self.job_last_op_id[self.incomplete_env_idx, chosen_job])
self.candidate[self.incomplete_env_idx, chosen_job] += candidate_add_flag
self.mask[self.incomplete_env_idx, chosen_job] = (1 - candidate_add_flag)
self.mch_queue[
self.incomplete_env_idx, chosen_mch, self.mch_queue_len[self.incomplete_env_idx, chosen_mch]] = chosen_op
self.mch_queue_len[self.incomplete_env_idx, chosen_mch] += 1
# [E]
chosen_op_st = np.maximum(self.candidate_free_time[self.incomplete_env_idx, chosen_job],
self.mch_free_time[self.incomplete_env_idx, chosen_mch])
self.op_ct[self.incomplete_env_idx, chosen_op] = chosen_op_st + self.op_pt[
self.incomplete_env_idx, chosen_op, chosen_mch]
self.candidate_free_time[self.incomplete_env_idx, chosen_job] = self.op_ct[self.incomplete_env_idx, chosen_op]
self.mch_free_time[self.incomplete_env_idx, chosen_mch] = self.op_ct[self.incomplete_env_idx, chosen_op]
true_chosen_op_st = np.maximum(self.true_candidate_free_time[self.incomplete_env_idx, chosen_job],
self.true_mch_free_time[self.incomplete_env_idx, chosen_mch])
self.true_op_ct[self.incomplete_env_idx, chosen_op] = true_chosen_op_st + self.true_op_pt[
self.incomplete_env_idx, chosen_op, chosen_mch]
self.true_candidate_free_time[self.incomplete_env_idx, chosen_job] = self.true_op_ct[
self.incomplete_env_idx, chosen_op]
self.true_mch_free_time[self.incomplete_env_idx, chosen_mch] = self.true_op_ct[
self.incomplete_env_idx, chosen_op]
self.current_makespan[self.incomplete_env_idx] = np.maximum(self.current_makespan[self.incomplete_env_idx],
self.true_op_ct[
self.incomplete_env_idx, chosen_op])
for k, j in enumerate(self.incomplete_env_idx):
if candidate_add_flag[k]:
self.candidate_pt[j, chosen_job[k]] = self.unmasked_op_pt[j, chosen_op[k] + 1]
self.candidate_process_relation[j, chosen_job[k]] = self.reverse_process_relation[j, chosen_op[k] + 1]
else:
self.candidate_process_relation[j, chosen_job[k]] = 1
candidateFT_for_compare = np.expand_dims(self.candidate_free_time, axis=2)
mchFT_for_compare = np.expand_dims(self.mch_free_time, axis=1)
self.pair_free_time = np.maximum(candidateFT_for_compare, mchFT_for_compare)
pair_free_time = self.pair_free_time[self.incomplete_env_idx]
schedule_matrix = ma.array(pair_free_time, mask=self.candidate_process_relation[self.incomplete_env_idx])
self.next_schedule_time[self.incomplete_env_idx] = np.min(
schedule_matrix.reshape(self.number_of_incomplete_envs, -1), axis=1).data
self.remain_process_relation[self.incomplete_env_idx, chosen_op] = 0
self.op_scheduled_flag[self.incomplete_env_idx, chosen_op] = 1
self.deleted_op_nodes = \
np.logical_and((self.op_ct <= self.next_schedule_time[:, np.newaxis]),
self.op_scheduled_flag)
self.delete_mask_fea_j = np.tile(self.deleted_op_nodes[:, :, np.newaxis],
(1, 1, self.op_fea_dim))
self.update_op_mask()
self.mch_queue_last_op_id[self.incomplete_env_idx, chosen_mch] = chosen_op
self.unscheduled_op_nums[self.incomplete_env_idx] -= 1
diff = self.op_ct[self.incomplete_env_idx, chosen_op] - self.op_ct_lb[self.incomplete_env_idx, chosen_op]
for k, j in enumerate(self.incomplete_env_idx):
self.op_ct_lb[j][chosen_op[k]:self.job_last_op_id[j, chosen_job[k]] + 1] += diff[k]
self.op_match_job_left_op_nums[j][
self.job_first_op_id[j, chosen_job[k]]:self.job_last_op_id[j, chosen_job[k]] + 1] -= 1
self.op_match_job_remain_work[j][
self.job_first_op_id[j, chosen_job[k]]:self.job_last_op_id[j, chosen_job[k]] + 1] -= \
self.op_mean_pt[j, chosen_op[k]]
self.op_waiting_time = np.zeros((self.number_of_envs, self.max_number_of_ops))
self.op_waiting_time[self.env_job_idx, self.candidate] = \
(1 - self.mask) * np.maximum(np.expand_dims(self.next_schedule_time, axis=1)
- self.candidate_free_time, 0) + self.mask * self.op_waiting_time[
self.env_job_idx, self.candidate]
self.op_remain_work = np.maximum(self.op_ct -
np.expand_dims(self.next_schedule_time, axis=1), 0)
self.construct_op_features()
self.dynamic_pair_mask = np.copy(self.candidate_process_relation)
self.unavailable_pairs = np.array([pair_free_time[k] > self.next_schedule_time[j]
for k, j in enumerate(self.incomplete_env_idx)])
self.dynamic_pair_mask[self.incomplete_env_idx] = np.logical_or(self.dynamic_pair_mask[self.incomplete_env_idx],
self.unavailable_pairs)
self.comp_idx = self.logic_operator(~self.dynamic_pair_mask)
self.update_mch_mask()
self.mch_current_available_jc_nums = np.sum(~self.dynamic_pair_mask, axis=1)
self.mch_current_available_op_nums[self.incomplete_env_idx] -= self.process_relation[
self.incomplete_env_idx, chosen_op]
mch_free_duration = np.expand_dims(self.next_schedule_time[self.
incomplete_env_idx], axis=1) - self.mch_free_time[self.incomplete_env_idx]
mch_free_flag = mch_free_duration < 0
self.mch_working_flag[self.incomplete_env_idx] = mch_free_flag + 0
self.mch_waiting_time[self.incomplete_env_idx] = (1 - mch_free_flag) * mch_free_duration
self.mch_remain_work[self.incomplete_env_idx] = np.maximum(-mch_free_duration, 0)
self.construct_mch_features()
self.construct_pair_features()
reward = self.max_endTime - np.max(self.op_ct_lb, axis=1)
self.max_endTime = np.max(self.op_ct_lb, axis=1)
self.state.update(self.fea_j, self.op_mask, self.fea_m, self.mch_mask,
self.dynamic_pair_mask, self.comp_idx, self.candidate,
self.fea_pairs)
self.done_flag = self.done()
return self.state, np.array(reward), self.done_flag
def done(self):
return self.step_count >= self.env_number_of_ops
def construct_op_features(self):
self.fea_j = np.stack((self.op_scheduled_flag,
self.op_ct_lb,
self.op_min_pt,
self.pt_span,
self.op_mean_pt,
self.op_waiting_time,
self.op_remain_work,
self.op_match_job_left_op_nums,
self.op_match_job_remain_work,
self.op_available_mch_nums), axis=2)
if self.flag_exist_dummy_node:
mask_all = np.logical_or(self.dummy_mask_fea_j, self.delete_mask_fea_j)
else:
mask_all = self.delete_mask_fea_j
self.norm_operation_features(mask=mask_all)
def norm_operation_features(self, mask):
self.fea_j[mask] = 0
num_delete_nodes = np.count_nonzero(mask[:, :, 0], axis=1)
num_delete_nodes = num_delete_nodes[:, np.newaxis]
num_left_nodes = self.max_number_of_ops - num_delete_nodes
num_left_nodes = np.maximum(num_left_nodes, 1e-8)
mean_fea_j = np.sum(self.fea_j, axis=1) / num_left_nodes
temp = np.where(self.delete_mask_fea_j,
mean_fea_j[:, np.newaxis, :], self.fea_j)
var_fea_j = np.var(temp, axis=1)
std_fea_j = np.sqrt(var_fea_j * self.max_number_of_ops / num_left_nodes)
self.fea_j = ((temp - mean_fea_j[:, np.newaxis, :]) / \
(std_fea_j[:, np.newaxis, :] + 1e-8))
def construct_mch_features(self):
self.fea_m = np.stack((self.mch_current_available_jc_nums,
self.mch_current_available_op_nums,
self.mch_min_pt,
self.mch_mean_pt,
self.mch_waiting_time,
self.mch_remain_work,
self.mch_free_time,
self.mch_working_flag), axis=2)
self.norm_machine_features()
def norm_machine_features(self):
self.fea_m[self.delete_mask_fea_m] = 0
num_delete_mchs = np.count_nonzero(self.delete_mask_fea_m[:, :, 0], axis=1)
num_delete_mchs = num_delete_mchs[:, np.newaxis]
num_left_mchs = self.number_of_machines - num_delete_mchs
num_left_mchs = np.maximum(num_left_mchs, 1e-8)
mean_fea_m = np.sum(self.fea_m, axis=1) / num_left_mchs
temp = np.where(self.delete_mask_fea_m,
mean_fea_m[:, np.newaxis, :], self.fea_m)
var_fea_m = np.var(temp, axis=1)
std_fea_m = np.sqrt(var_fea_m * self.number_of_machines / num_left_mchs)
self.fea_m = ((temp - mean_fea_m[:, np.newaxis, :]) / \
(std_fea_m[:, np.newaxis, :] + 1e-8))
def construct_pair_features(self):
remain_op_pt = ma.array(self.op_pt, mask=~self.remain_process_relation)
chosen_op_max_pt = np.expand_dims(self.op_max_pt[self.env_job_idx, self.candidate], axis=-1)
max_remain_op_pt = np.max(np.max(remain_op_pt, axis=1, keepdims=True), axis=2, keepdims=True) \
.filled(0 + 1e-8)
mch_max_remain_op_pt = np.max(remain_op_pt, axis=1, keepdims=True). \
filled(0 + 1e-8)
pair_max_pt = np.max(np.max(self.candidate_pt, axis=1, keepdims=True),
axis=2, keepdims=True) + 1e-8
mch_max_candidate_pt = np.max(self.candidate_pt, axis=1, keepdims=True) + 1e-8
pair_wait_time = self.op_waiting_time[self.env_job_idx, self.candidate][:, :,
np.newaxis] + self.mch_waiting_time[:, np.newaxis, :]
chosen_job_remain_work = np.expand_dims(self.op_match_job_remain_work
[self.env_job_idx, self.candidate],
axis=-1) + 1e-8
self.fea_pairs = np.stack((self.candidate_pt,
self.candidate_pt / chosen_op_max_pt,
self.candidate_pt / mch_max_candidate_pt,
self.candidate_pt / max_remain_op_pt,
self.candidate_pt / mch_max_remain_op_pt,
self.candidate_pt / pair_max_pt,
self.candidate_pt / chosen_job_remain_work,
pair_wait_time), axis=-1)
def update_mch_mask(self):
self.mch_mask = self.logic_operator(self.remain_process_relation).sum(axis=-1).astype(bool)
self.delete_mask_fea_m = np.tile(~(np.sum(self.mch_mask, keepdims=True, axis=-1).astype(bool)),
(1, 1, self.mch_fea_dim))
self.mch_mask[self.multi_env_mch_diag] = 1
def init_mch_mask(self):
self.mch_mask = self.logic_operator(self.remain_process_relation).sum(axis=-1).astype(bool)
self.delete_mask_fea_m = np.tile(~(np.sum(self.mch_mask, keepdims=True, axis=-1).astype(bool)),
(1, 1, self.mch_fea_dim))
self.mch_mask[self.multi_env_mch_diag] = 1
def init_op_mask(self):
self.op_mask = np.full(shape=(self.number_of_envs, self.max_number_of_ops, 3),
fill_value=0, dtype=np.float32)
self.op_mask[self.env_job_idx, self.job_first_op_id, 0] = 1
self.op_mask[self.env_job_idx, self.job_last_op_id, 2] = 1
def update_op_mask(self):
object_mask = np.zeros_like(self.op_mask)
object_mask[:, :, 2] = self.deleted_op_nodes
object_mask[:, 1:, 0] = self.deleted_op_nodes[:, :-1]
self.op_mask = np.logical_or(object_mask, self.op_mask).astype(np.float32)
def logic_operator(self, x, flagT=True):
if flagT:
x = x.transpose(0, 2, 1)
d1 = np.expand_dims(x, 2)
d2 = np.expand_dims(x, 1)
return np.logical_and(d1, d2).astype(np.float32)