-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathargs.py
105 lines (62 loc) · 3.43 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from argparse import ArgumentParser
def make_args(input = None):
parser = ArgumentParser()
parser.add_argument('--comment', dest='comment', default='', type=str,
help='comment')
parser.add_argument('--dataset', dest='dataset', default='dblp', type=str,
help='name of the dataset')
parser.add_argument('--gpu', dest='gpu', action='store_true',
help='whether use gpu')
parser.add_argument('--cpu', dest='gpu', action='store_false',
help='whether use cpu')
parser.add_argument('--cuda', dest='cuda', default='0', type=str)
parser.add_argument('--res_path', dest='res_path', default='result/res.csv', type=str)
parser.add_argument('--model_dir', dest='model_dir', default='saved_model', type=str)
parser.add_argument('--ps', dest='ps', default='', type=str)
parser.add_argument('--lr', type=float, default=1e-2,help='learning rate')
parser.add_argument('--sigma', type=float, default=0.5,help='sigma of tf loss (default 1)')
parser.add_argument('--beta', type=float, default=1e-1,help='beta of tf loss (default 1e-1)')
parser.add_argument('--gamma', type=float, default=1e-1,help='gamma of sim loss (default 1e-1)')
parser.add_argument('--alpha', type=float, default=0.95,help='alpha of message passing')
parser.add_argument('--drop_out', type=float, default=0.5, help = 'dropout rate')
parser.add_argument('--eval_time', type=int, default=1,help='epochs for evaluation')
parser.add_argument('--layer_num', type=int, default=2, help='The number of layers')
parser.add_argument('--conv_num', type=int, default=3, help='The number of conv layers')
parser.add_argument('--hid_d', type=int, default=512, help='The dimension of hidden layers')
parser.add_argument('--d', type=int, default=64, help='The dimension of output')
parser.add_argument('--lam', type=float, default=0.5,help='The initial value of lambda')
parser.add_argument('--m', type=float, default=0.,help='The initial value of m')
parser.add_argument('--topk', type=int, default=100, help='The initial value of topk')
parser.add_argument('--re', type=int, dest='he', default=10, help='The initial value of hidden edge percentage')
parser.add_argument('--rw', type=int, dest='hw', default=0, help='The initial value of hidden keywords percentage')
parser.add_argument('--kw', type=int, default=2, help='The initial value of kw_num')
parser.add_argument('--repeat', type=int, default=10, help='The times of repeat')
parser.add_argument('--epochs_num', dest='epochs_num', default=500, type=int,
help='Number of epochs')
parser.set_defaults(
dataset= 'citeseer',
alpha = 0.95,
beta = 1,
sigma = 0.5,
gamma = 1,
topk = 100,
kw = 3,
he = 0,
hw = 30,
pca_verbal = True,
)
if input is None:
args = parser.parse_args()
else:
args = parser.parse_args(input)
# if args.saved_model:
return args
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')