-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbar_tracker.py
204 lines (168 loc) · 7.02 KB
/
bar_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import cv2
import sys
import numpy as np
import tensorflow as tf
# Import utilites from research/object_detection
# requires that this be on the PYTHONPATH
from utils import label_map_util
from utils import visualization_utils as vis_util
from imutils.video import FPS
from collections import deque
def getInitialBoundingBox(frame):
"""
given an image, find the bounding box for the barbell plate using the
trained RCNN.
This is then tracked using OpenCV KCF.
"""
# Name of the directory containing the object detection module we're using
MODEL_NAME = 'inference_graph'
# Grab path to current working directory
CWD_PATH = os.getcwd()
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = os.path.join(CWD_PATH, MODEL_NAME,
'frozen_inference_graph.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH, 'training', 'labelmap.pbtxt')
# Number of classes the object detector can identify
NUM_CLASSES = 1
# Load the label map.
# Label maps map indices to category names, so that when our convolution
# network predicts `5`, we know that this corresponds to `king`.
# Here we use internal utility functions, but anything that returns a
# dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name(
'detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Get the actual frame to analyse
frame_expanded = np.expand_dims(frame, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: frame_expanded})
# Draw the results of the detection (aka 'visulaize the results')
ymin, xmin, ymax, xmax = np.squeeze(boxes)[0]
print(np.squeeze(boxes)[0])
# Gotta multiply by image width and height to get pixels
im_height, im_width, _ = frame.shape
print(frame.shape)
xmin = int(xmin * im_width)
xmax = int(xmax * im_width)
ymin = int(ymin * im_height)
ymax = int(ymax * im_height)
return (xmin, xmax, ymin, ymax)
if __name__ == '__main__':
# Set up tracker.
tracker_types = [
'BOOSTING', 'MIL', 'KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', 'MOSSE',
'CSRT'
]
tracker_functions = [
cv2.TrackerBoosting_create, cv2.TrackerMIL_create,
cv2.TrackerKCF_create, cv2.TrackerTLD_create,
cv2.TrackerMedianFlow_create, cv2.TrackerGOTURN_create,
cv2.TrackerMOSSE_create, cv2.TrackerCSRT_create
]
tracker_dict = dict(zip(tracker_types, tracker_functions))
tracker_type = "KCF"
tracker = tracker_dict[tracker_type]()
# Read video
try:
VIDEO_NAME = sys.argv[1]
except IndexError:
print("please supply a path to a video file")
sys.exit()
video = cv2.VideoCapture(VIDEO_NAME)
# Exit if video not opened.
if not video.isOpened():
print("Could not open video")
sys.exit()
# Read first frame.
ok, frame = video.read()
im_height, im_width, _ = frame.shape
if not ok:
print('Cannot read video file')
sys.exit()
# Lets write the annotated file out as an mp4
height, width, layers = frame.shape
fps = video.get(cv2.CAP_PROP_FPS)
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
video_out = cv2.VideoWriter("out.mp4", fourcc, fps, (width,height), isColor=True)
frameCount = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
# # Initialize tracker with first frame and bounding box
initBB = None
fps = None
xmin, xmax, ymin, ymax = getInitialBoundingBox(frame)
initBB = (xmin, ymin, xmax-xmin, ymax-ymin)
tracker.init(frame, initBB)
fps = FPS().start()
points = deque(maxlen=frameCount)
while True:
# Read a new frame
ok, frame = video.read()
if not ok:
break
ok, bbox = tracker.update(frame)
if ok:
# Tracking success
(x, y, w, h) = [int(v) for v in bbox]
p1 = (int(bbox[0]), int(bbox[1]))
p2 = (int(bbox[2]), int(bbox[3]))
path_color = (0,255,0)
cv2.rectangle(frame, (x, y), (x + w, y + h), path_color, 2)
# Draw centroid
center_point_x = int(x+ 0.5*w)
center_point_y = int(y + 0.5*h)
center = (center_point_x,center_point_y)
cv2.circle(frame, center, 2, path_color, -1)
points.appendleft(center)
for i in range(1, len(points)):
if points[i-1] is None or points[i] is None:
continue
cv2.line(frame, points[i-1], points[i], path_color,2)
else:
# Tracking failure
cv2.putText(frame, "Tracking failure detected", (100, 80),
cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
fps.update()
fps.stop()
info = [
("Tracker", tracker_type),
("Success", "Yes" if ok else "No"),
("FPS", "{:.2f}".format(fps.fps())),
]
# loop over the info tuples and draw them on our frame
for (i, (k, v)) in enumerate(info):
text = "{}: {}".format(k, v)
cv2.putText(frame, text, (10, im_height - ((i * 20) + 20)),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
cv2.imshow("Frame", frame)
video_out.write(frame)
key = cv2.waitKey(1) & 0xFF
# Clean up
video.release()
cv2.destroyAllWindows()