-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSignalMatrix.hxx
357 lines (297 loc) · 15.9 KB
/
SignalMatrix.hxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
//
// Created by Zhiping Jiang on 11/25/20.
//
#ifndef PICOSCENES_PLATFORM_SIGNALMATRIX_HXX
#define PICOSCENES_PLATFORM_SIGNALMATRIX_HXX
#include <vector>
#include <cstdint>
#include <complex>
#include <iterator>
#include <string>
#include <cstring>
#include <numeric>
#include <fstream>
#include <algorithm>
enum class SignalMatrixStorageMajority : char {
RowMajor = 'R',
ColumnMajor = 'C',
UndefinedMajority = 'U',
};
template<typename>
struct is_std_complex : std::false_type {
};
template<typename ValueType>
struct is_std_complex<std::complex<ValueType>> : std::true_type {
};
template<typename SignalType = std::complex<double>, typename = std::enable_if_t<std::is_arithmetic_v<SignalType> || is_std_complex<SignalType>::value>>
class SignalMatrix {
using SignalElementType = std::conditional_t<std::is_arithmetic_v<SignalType>, SignalType, std::remove_reference_t<decltype(std::declval<std::conditional_t<std::is_arithmetic_v<SignalType>, std::complex<SignalType>, SignalType>>().real())>>;
public:
std::vector<SignalType> array; // The core data storage
std::vector<int64_t> dimensions;
SignalMatrixStorageMajority majority = SignalMatrixStorageMajority::UndefinedMajority;
SignalMatrix() = default;
template<typename DimensionContainerType>
SignalMatrix(const std::vector<SignalType>& array, const DimensionContainerType& dimensionsV, const SignalMatrixStorageMajority majority = SignalMatrixStorageMajority::UndefinedMajority) : array(array), dimensions(dimensionsV.begin(), dimensionsV.end()), majority(majority) {
if (auto sum = std::accumulate(dimensions.cbegin(), dimensions.cend(), 1L, std::multiplies()); sum != array.size())
throw std::invalid_argument("SignalMatrix creation failed due to the inconsistent dimensions. sum=" + std::to_string(sum) + " array=" + std::to_string(array.size()));
}
template<typename DimensionContainerType>
SignalMatrix(std::vector<SignalType>&& arrayV, const DimensionContainerType& dimensionsV, const SignalMatrixStorageMajority majority = SignalMatrixStorageMajority::UndefinedMajority) : array(std::move(arrayV)), dimensions(dimensionsV.begin(), dimensionsV.end()), majority(majority) {
if (auto sum = std::accumulate(dimensions.cbegin(), dimensions.cend(), 1L, std::multiplies()); sum != array.size())
throw std::invalid_argument("SignalMatrix creation failed due to the inconsistent dimensions. sum=" + std::to_string(sum) + " array=" + std::to_string(array.size()));
}
[[nodiscard]] bool empty() const {
return array.empty() || dimensions.empty();
}
SignalType valueAt(const std::initializer_list<int64_t> coordinates) const {
return array.at(computeIndex4Coordinates(dimensions, majority, coordinates));
}
SignalType valueAt(uint64_t index) const {
return array.at(index);
}
[[nodiscard]] uint64_t getIndex4Coordinates(const std::vector<int64_t>& coordinates) const {
return computeIndex4Coordinates(dimensions, majority, coordinates);
}
[[nodiscard]] uint64_t getIndex4Coordinates(const std::initializer_list<int64_t> coordinates) const {
return computeIndex4Coordinates(dimensions, majority, coordinates);
}
[[nodiscard]] std::vector<int64_t> getCoordinate4Index(const uint64_t pos) const {
return computeCoordinate4Index(dimensions, majority, pos);
}
[[nodiscard]] int formatPrefixLength() const {
return 4 // "BBv2"
+ 1 // dim size
+ sizeof(dimensions[0]) * dimensions.size()
+ 3 // "CF" 64
+ 1; // "R" or "C"
}
[[nodiscard]] int toBufferMemoryLength() const {
return formatPrefixLength() + array.size() * sizeof(SignalType);
}
[[nodiscard]] std::vector<uint8_t> toBuffer(SignalMatrixStorageMajority outputMajority = SignalMatrixStorageMajority::UndefinedMajority) const {
std::vector<uint8_t> vout(toBufferMemoryLength());
size_t offset{0};
const std::string header_version("BBv2");
std::memcpy(vout.data() + offset, header_version.data(), header_version.size());
offset += header_version.size();
// Dimensions size
vout[offset++] = dimensions.size();
// Copy dimensions
for (const auto& dimension: dimensions) {
std::memcpy(vout.data() + offset, &dimension, sizeof(dimension));
offset += sizeof(dimension);
}
// Type information
vout[offset++] = is_std_complex<SignalType>::value ? 'C' : 'R';
vout[offset++] = getTypeChar<SignalElementType>();
vout[offset++] = sizeof(SignalElementType) * 8;
outputMajority = outputMajority == SignalMatrixStorageMajority::UndefinedMajority ? majority : outputMajority;
switch (outputMajority) {
case SignalMatrixStorageMajority::RowMajor:
vout[offset++] = 'R';
break;
case SignalMatrixStorageMajority::ColumnMajor:
vout[offset++] = 'C';
break;
case SignalMatrixStorageMajority::UndefinedMajority:
throw std::runtime_error("SignalMatrix::toBuffer failed due to unsupported storage majority.");
}
if (majority == outputMajority) {
std::memcpy(vout.data() + offset, array.data(), array.size() * sizeof(SignalType));
} else {
for (uint64_t i = 0; i < array.size(); i++) {
auto pos = computePositionUnderInversedMajority(i, dimensions);
std::memcpy(vout.data() + offset, &array[pos], sizeof(SignalType));
offset += sizeof(SignalType);
}
}
return vout;
}
template<typename ContainerType, typename = std::enable_if_t<std::is_same_v<typename ContainerType::value_type, uint8_t>>>
static SignalMatrix<SignalType> fromBuffer(const ContainerType& container, SignalMatrixStorageMajority storageMajority = SignalMatrixStorageMajority::UndefinedMajority) {
return fromBuffer(container.begin(), container.end(), storageMajority);
}
template<typename Iterator, typename = std::enable_if_t<std::is_same_v<typename std::iterator_traits<Iterator>::value_type, uint8_t>>>
static SignalMatrix<SignalType> fromBuffer(Iterator begin, Iterator end, SignalMatrixStorageMajority storageMajority) {
if (!verifyCompatibility(begin)) {
throw std::runtime_error("Incompatible SignalMatrix format");
}
auto matrixVersion = getMatrixVersionId(begin);
begin += 4;
SignalMatrix<SignalType> signal;
const uint8_t numDimensions = *begin++;
for (auto i = 0; i < numDimensions; i++) {
if (matrixVersion == 1) {
auto v = *reinterpret_cast<uint32_t *>(const_cast<uint8_t *>(&*begin));
signal.dimensions.emplace_back(v);
begin += 4;
} else if (matrixVersion == 2) {
auto v = *reinterpret_cast<uint64_t *>(const_cast<uint8_t *>(&*begin));
signal.dimensions.emplace_back(v);
begin += 8;
}
}
auto complexChar = *reinterpret_cast<char *>(const_cast<uint8_t *>(&*begin++));
auto inputComplexityChar = is_std_complex<SignalType>::value ? 'C' : 'R';
if (inputComplexityChar != complexChar) {
throw std::runtime_error("Incompatible SignalMatrix complexity");
}
auto typeChar = *reinterpret_cast<char *>(const_cast<uint8_t *>(&*begin++));
if (typeChar != getTypeChar<SignalElementType>()) {
throw std::runtime_error("Incompatible SignalMatrix value type");
}
auto numTypeBits = *begin++;
if (numTypeBits != sizeof(SignalElementType) * 8) {
throw std::runtime_error("Incompatible SignalMatrix value sizeof");
}
auto majorityChar = *reinterpret_cast<char *>(const_cast<uint8_t *>(&*begin++));
auto inputMajority = static_cast<SignalMatrixStorageMajority>(majorityChar);
signal.majority = storageMajority == SignalMatrixStorageMajority::UndefinedMajority ? inputMajority : storageMajority;
auto numel = std::accumulate(signal.dimensions.cbegin(), signal.dimensions.cend(), 1, std::multiplies());
auto distanceIterator = static_cast<size_t>(std::distance(begin, end));
if (distanceIterator != numel * sizeof(SignalType))
throw std::runtime_error("Inconsistent SignalMatrix data buffer");
signal.array.resize(numel);
if (signal.majority == inputMajority) {
for (auto i = 0; i < numel; i++) {
signal.array[i] = *reinterpret_cast<SignalType *>(const_cast<uint8_t *>(&*begin));
begin += sizeof(SignalType);
}
} else {
for (auto i = 0; i < numel; i++) {
auto newPos = computePositionUnderInversedMajority(i, signal.dimensions);
signal.array[newPos] = *reinterpret_cast<SignalType *>(const_cast<uint8_t *>(&*begin));
begin += sizeof(SignalType);
}
}
return signal;
}
double normalize(double normBaseValue = std::is_floating_point_v<SignalElementType> ? 1.0 : std::numeric_limits<SignalElementType>::max()) {
const auto& maxValue = std::max_element(array.cbegin(), array.cend(), [](const SignalType& left, const SignalType& right) {
return std::abs(left) < std::abs(right);
});
auto scaleFactor = normBaseValue / std::abs(*maxValue);
std::transform(array.cbegin(), array.cend(), array.begin(), [scaleFactor](const SignalType& signalVlaue) {
auto newValue = signalVlaue * scaleFactor;
return newValue;
});
return scaleFactor;
}
static SignalMatrix<SignalType> fromFile(const std::string& filePath) {
auto inputStream = std::ifstream(filePath, std::ios::binary | std::ios::in);
std::vector<uint8_t> buffer(std::istreambuf_iterator<char>(inputStream), {});
auto parseResult = SignalMatrix<SignalType>::fromBuffer(buffer, SignalMatrixStorageMajority::UndefinedMajority);
return parseResult;
}
void dump2File(const std::string& filePath, const SignalMatrixStorageMajority outputMajority = SignalMatrixStorageMajority::UndefinedMajority) const {
auto outputStream = std::ofstream(filePath, std::ios::binary | std::ios::out);
const auto bufferV = toBuffer(outputMajority);
const std::ostream_iterator<uint8_t> ostreamIterator(outputStream);
std::copy(bufferV.cbegin(), bufferV.cend(), ostreamIterator);
outputStream.flush();
outputStream.close();
}
template<typename AnotherPrimaryType>
SignalMatrix<std::complex<AnotherPrimaryType>> convertTo() const {
std::vector<std::complex<AnotherPrimaryType>> newArray;
newArray.reserve(array.size());
for (const auto& oldValue: array)
newArray.emplace_back(std::complex<AnotherPrimaryType>(static_cast<AnotherPrimaryType>(oldValue.real()), static_cast<AnotherPrimaryType>(oldValue.imag())));
return SignalMatrix<std::complex<AnotherPrimaryType>>(newArray, dimensions, majority);
}
private:
template<typename Iterator>
static bool verifyCompatibility(const Iterator& inputBegin) {
char fileHeader[3];
char fileVersion[3];
memset(fileHeader, 0, sizeof(fileHeader));
memset(fileVersion, 0, sizeof(fileVersion));
auto begin = inputBegin;
std::copy(begin, begin + 2, std::begin(fileHeader));
begin += 2;
std::copy(begin, begin + 2, std::begin(fileVersion));
return std::strcmp(fileHeader, "BB") == 0 && (std::strcmp(fileVersion, "v1") == 0 || std::strcmp(fileVersion, "v2") == 0);
}
template<typename Iterator>
static uint8_t getMatrixVersionId(const Iterator& begin) {
uint8_t fileVersionId;
std::copy(begin + 3, begin + 4, &fileVersionId);
return fileVersionId - 48;
}
template<typename TypeForChecking>
static char getTypeChar() {
if (std::is_same_v<TypeForChecking, float>) { return 'F'; }
if (std::is_same_v<TypeForChecking, double>) { return 'D'; }
if (std::is_same_v<TypeForChecking, uint8_t>) { return 'U'; }
if (std::is_same_v<TypeForChecking, uint16_t>) { return 'U'; }
if (std::is_same_v<TypeForChecking, uint32_t>) { return 'U'; }
if (std::is_same_v<TypeForChecking, uint64_t>) { return 'U'; }
if (std::is_same_v<TypeForChecking, int8_t>) { return 'I'; }
if (std::is_same_v<TypeForChecking, int16_t>) { return 'I'; }
if (std::is_same_v<TypeForChecking, int32_t>) { return 'I'; }
if (std::is_same_v<TypeForChecking, int64_t>) { return 'I'; }
if (std::is_same_v<TypeForChecking, char>) { return 'C'; }
if (std::is_same_v<TypeForChecking, bool>) { return 'L'; }
throw std::runtime_error("BBSignalsFileWriter: unsupported element type.");
}
static uint64_t computeIndex4Coordinates(const std::vector<int64_t>& originalDimensions, const SignalMatrixStorageMajority majorityV, const std::vector<int64_t>& coordinates) {
auto dimensions = originalDimensions;
auto coord = coordinates;
if (majorityV == SignalMatrixStorageMajority::RowMajor) {
std::reverse(coord.begin(), coord.end());
std::reverse(dimensions.begin(), dimensions.end());
}
uint64_t pos = 0;
for (auto i = 0; i < coord.size(); i++) {
const auto numElementsPerDimension = std::accumulate(dimensions.cbegin(), dimensions.cbegin() + i, 1, std::multiplies());
pos += numElementsPerDimension * coord[i];
}
return pos;
}
static std::vector<int64_t> computeCoordinate4Index(const std::vector<int64_t>& originalDimensions, const SignalMatrixStorageMajority majorityV, const uint64_t pos) {
std::vector<int64_t> coordinates(originalDimensions.size());
auto dimensions = originalDimensions;
auto inputPos = pos;
if (majorityV == SignalMatrixStorageMajority::ColumnMajor) {
std::reverse(dimensions.begin(), dimensions.end());
}
for (int64_t i = dimensions.size() - 1; i >= 0; i--) {
const auto numElementsPerDimension = std::accumulate(dimensions.cbegin(), dimensions.cbegin() + i, 1, std::multiplies());
coordinates[i] = inputPos / numElementsPerDimension;
inputPos %= numElementsPerDimension;
}
if (majorityV == SignalMatrixStorageMajority::ColumnMajor) {
std::reverse(coordinates.begin(), coordinates.end());
}
return coordinates;
}
static uint64_t computePositionUnderInversedMajority(const uint64_t newPos, const std::vector<int64_t>& originalDimensions) {
auto revD = originalDimensions;
std::reverse(revD.begin(), revD.end());
std::vector<uint64_t> coordinates(revD.size(), 0);
auto inputPos = newPos;
for (uint64_t i = 1; i <= revD.size(); i++) {
const auto numElementsPerDimension = std::accumulate(revD.cbegin(), revD.cend() - i, 1, std::multiplies());
coordinates[originalDimensions.size() - i] = inputPos / numElementsPerDimension;
inputPos %= numElementsPerDimension;
}
auto oldCoordinates = coordinates;
std::reverse(oldCoordinates.begin(), oldCoordinates.end());
auto oldPos = 0;
for (uint64_t i = 0; i < coordinates.size(); i++) {
const auto numElementsPerDimension = std::accumulate(originalDimensions.cbegin(), originalDimensions.cbegin() + i, 1, std::multiplies());
oldPos += numElementsPerDimension * oldCoordinates[i];
}
return oldPos;
}
};
template<typename SignalType>
void operator<<(SignalMatrix<SignalType>& signalMatrix, const std::string& filePath) {
signalMatrix = SignalMatrix<SignalType>::fromFile(filePath);
}
template<typename SignalType>
void operator>>(const SignalMatrix<SignalType>& signalMatrix, const std::string& filePath) {
signalMatrix.dump2File(filePath);
}
#endif //PICOSCENES_PLATFORM_SIGNALMATRIX_HXX