-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.py
301 lines (276 loc) · 10.3 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
from celluloid import Camera
from solve_rg_model import rgk_spectrum, delta_relations
from solve_rg_model import compute_hyperbolic_energy
from solve_rg_model import compute_infinite_G
import numpy as np
import matplotlib.pyplot as plt
import sys
from xxy_richardson_gaudin_bethe import bethe
import exact_diag as ed
import time
np.set_printoptions(precision=20)
def do_infinite(L, N):
# camera = Camera(fig)
k, epsilon = rgk_spectrum(L, 1, 0, peri=False)
l = int(L/2)
n = int(N/2)
alpha = 1
if L < 2*N:
alpha = -1
epsilon = epsilon * alpha # relationship between epsilon and eta
G_path, nsk = compute_infinite_G(l, n, epsilon, float(sys.argv[2])/L)
if alpha > 0:
jumps = [ns[n-1] - ns[n] for ns in nsk]
else:
jumps = [ns[-n] - ns[-(n+1)] for ns in nsk]
G_path[-1] = 1.1*G_path[-2]
G_path = G_path * alpha
plt.scatter(l*G_path[:-1], jumps[:-1], label='{}, {}'.format(L,N))
plt.axhline(jumps[-1], ls = ':')
return jumps[-1]
def compare_bethe(diag=True):
# doing 3 way test with bethe ansatz and exact diagonalization
L = int(sys.argv[1])
N = int(sys.argv[2])
k, epsilon = rgk_spectrum(2*L, 1, 0, peri=False)
print(epsilon)
G =float(sys.argv[3])/(L-2*N+1)
# G = 1.4/(L-N+1)
print(G)
qenergies, qn, deltas, Ges, Z = compute_hyperbolic_energy(L, N, G,
epsilon, .05/L)
print('Deltas are:')
print(deltas[-1])
# dg=.001/L
dg = .1/L
Gmr = 1./(L-N+1)
if G > Gmr: # want results from 0 to Gmr (>0)
imscale = .1/L
# Bethe ansatz results from Gmr -> G
rE1, iE1, rP1, iP1, er1, Gp1 = bethe.compute_energy(L, N, G, epsilon,
imscale=imscale, dg=dg, hold=0.0)
# Bethe ansatz results from Gmr -> 0
rE2, iE2, rP2, iP2, er2, Gp2 = bethe.compute_energy(L, N, 0, epsilon,
imscale=imscale, dg=dg, hold=0.0)
Gp = np.concatenate((Gp2, Gp1[1:]))
benergies = np.concatenate((rE2, rE1[1:]))
elif 0 < G < Gmr: # we'll just go from 0 to Gmr
# imscale = 1./(L**2)
imscale = 0.01/L
rE, iE, rP, iP, er, Gp = bethe.compute_energy(L, N, 0, epsilon,
imscale=imscale, dg=dg, hold=0.0)
benergies = rE
else: # we go from Gmr to G
imscale = .1/L
rE, iE, rP, iP, er, Gp = bethe.compute_energy(L, N, G, epsilon,
imscale=imscale, dg=dg, hold=0.5)
benergies = rE
l = len(Gp)
denergies = np.zeros(l)
if diag:
for i, Gi in enumerate(Gp):
print('G = {}'.format(Gi))
H = ed.form_hyperbolic_hamiltonian(L, Gi, epsilon, N=N)
denergies[i] = np.min(H.eigvalsh())
plt.figure(figsize=(12, 8))
plt.subplot(2,2,1)
plt.scatter(Ges, qenergies, label = 'quad', marker = '1')
plt.scatter(Gp, benergies, label = 'rg', marker = 'x')
if diag:
plt.scatter(Gp, denergies, label = 'diag', marker = 'o', s=4,
color='r')
Gmr = 1./(L-N+1)
Grg = 1./(L-2*N+1)
Gn = -2./(N-1)
if np.min(Gp) < Gmr < np.max(Gp):
plt.axvline(Gmr, color='r')
if np.min(Gp) < Grg < np.max(Gp):
plt.axvline(Grg, color = 'g')
if np.min(Gp) < Gn < np.max(Gp):
plt.axvline(Gn, color = 'c')
plt.ylim(0.5*np.min(qenergies), 1.5*np.max(qenergies))
plt.legend()
plt.subplot(2,2,2)
if diag:
plt.scatter(Gp, benergies-denergies)
plt.subplot(2,2,3)
for i in range(N):
if G > Gmr:
reals1 = [rP1[j][i] for j in range(len(Gp1))]
plt.scatter(Gp1, reals1, s=4)
reals2 = [rP2[j][i] for j in range(len(Gp2))]
plt.scatter(Gp2, reals2, s=4)
else:
reals = [rP[j][i] for j in range(len(Gp))]
plt.scatter(Gp, reals, s=4)
if np.min(Gp) < Gmr < np.max(Gp):
plt.axvline(Gmr, color='r')
if np.min(Gp) < Grg < np.max(Gp):
plt.axvline(Grg, color = 'g')
if np.min(Gp) < Gn < np.max(Gp):
plt.axvline(Gn, color = 'c')
plt.ylim(-1, 1)
plt.subplot(2,2,4)
for i in range(N):
if G > Gmr:
imps1 = [iP1[j][i] for j in range(len(Gp1))]
plt.scatter(Gp1, imps1, s=4)
imps2 = [iP2[j][i] for j in range(len(Gp2))]
plt.scatter(Gp2, imps2, s=4)
else:
imps = [iP[j][i] for j in range(len(Gp))]
plt.scatter(Gp, imps, s=4)
if np.min(Gp) < Gmr < np.max(Gp):
plt.axvline(Gmr, color='r')
if np.min(Gp) < Grg < np.max(Gp):
plt.axvline(Grg, color = 'g')
if np.min(Gp) < Gn < np.max(Gp):
plt.axvline(Gn, color = 'c')
# plt.ylim(-1, 1)
def examine_deltas():
L = int(sys.argv[1])
N = int(sys.argv[2])
# N = int(0.75*L)
l = int(L/2)
n = int(N/2)
Grg = 1./(l-2*n+1)
Gp = -1./(n-l/2-1)
k, rgke = rgk_spectrum(L, 1, 0, peri=False, fix=False)
spectrum2 = 'RGK'
if float(sys.argv[3]) == 0:
epsilon = k**2 - (k**4)/(4*3*2)
epsilon = epsilon/np.max(epsilon)
spectrum = 'modified rgk'
plt.scatter(k, epsilon, marker='o')
plt.scatter(k, rgke, marker='x')
plt.show()
else:
epsilon = k**float(sys.argv[3])
spectrum = 'k^{}'.format(sys.argv[3])
G = Grg * 3.1
print(G)
g_step = 0.1/L
if len(sys.argv) > 4:
g_step = float(sys.argv[4])/L
start=0.7
print('Params: L, N, spectrum, g_step = {} {} {} {}'.format(L, N, spectrum, g_step))
# now doing stuff
print('Running with RGK spectrum')
energies_rgk, nsk_rgk, deltas_rgk, Gs_rgk, Z_rgk = compute_hyperbolic_energy(l, n, G,
rgke, g_step,
start=start)
print('Running with {} spectrum'.format(spectrum))
energies, nsk, deltas, Gs, Z = compute_hyperbolic_energy(l, n, G, epsilon,
g_step, start=start)
print('Got results. Plotting!')
fig = plt.figure(figsize=(12,8))
camera = Camera(fig)
for i, ds in enumerate(deltas_rgk):
if Gs_rgk[i] < 0.9*start*Gp:
print(Gs_rgk[i])
plt.scatter(k, ds)
camera.snap()
camera.animate()
plt.show()
gs = -Gs/(1+Gs*(n-l/2-1))
print('Columnular sum for rgk')
print(np.sum(Z_rgk, axis=1))
print('Columnular sum for other')
print(np.sum(Z, axis=1))
# doing extra plotz
plt.figure(figsize=(12,8))
plt.subplot(3,1,1)
# plt.scatter(Gs, energies)
lambds = 1./(1+Gs*(n-l/2-1))
eterm1 = np.zeros(len(Gs))
eterm2 = np.zeros(len(Gs))
eterm1r = np.zeros(len(Gs))
eterm2r = np.zeros(len(Gs))
ioms = np.zeros((len(Gs), len(k)))
iomrs = np.zeros((len(Gs), len(k)))
for i, g in enumerate(gs):
ioms[i] = -1./2 - deltas[i]/2 + g/4*np.sum(Z, axis=1)
eterm1[i] = (1/lambds[i] ) * np.dot(epsilon, ioms[i])
eterm2[i] = np.sum(epsilon)*(1./2 - 3/4*Gs[i])
iomrs[i] = -1./2 - deltas_rgk[i]/2 + g/4*np.sum(Z_rgk, axis=1)
eterm1r[i] = (1/lambds[i] ) * np.dot(rgke, iomrs[i])
eterm2r[i] = np.sum(rgke)*(1./2 - 3/4*Gs[i])
plt.title('Ground state energy')
plt.scatter(Gs, energies-energies[0], marker='+',
label = '{} spectrum'.format(spectrum),
color = 'c')
plt.scatter(Gs, energies_rgk - energies_rgk[0], marker='x',
label = '{} spectrum'.format(spectrum2),
color = 'm')
# plt.ylim(0, 1.1*(energies[-3]-energies[0]))
plt.axvline(Grg)
if G < Gp < 0 or G > Gp > 0:
plt.axvline(start*Gp, ls = ':')
plt.axvline((2-start)*Gp, ls = ':')
plt.axvline(Gp, color='r')
plt.xlim(1.1*(2-start)*Gp, 0.9*start*Gp)
# plt.xlabel('G')
plt.ylabel('E_0')
plt.legend()
plt.subplot(3,1,2)
plt.title('Elements of r_k as a function of coupling')
r0s = [iom[0] for iom in ioms]
r0rs = [iomr[0] for iomr in iomrs]
rLs = [iom[-1] for iom in ioms]
rLrs = [iomr[-1] for iomr in iomrs]
rNs = [iom[n-1] for iom in ioms]
rNrs = [iomr[n-1] for iomr in iomrs]
rN1s = [iom[n] for iom in ioms]
rN1rs = [iomr[n] for iomr in iomrs]
plt.scatter(Gs, r0s, label = '1st site {}'.format(spectrum), marker = '+', s=4)
plt.scatter(Gs, r0rs, label = '1st site {}'.format(spectrum2), marker = 'x', s=4)
plt.scatter(Gs, rNs, label = 'Mth site {}'.format(spectrum), marker = '+', s=4)
plt.scatter(Gs, rNrs, label = 'Mth {}'.format(spectrum2), marker = 'x', s=4)
plt.scatter(Gs, rN1s, label = 'M+1th site {}'.format(spectrum), marker = '+', s=4)
plt.scatter(Gs, rN1rs, label = 'M+1th {}'.format(spectrum2), marker = 'x', s=4)
plt.scatter(Gs, rLs, label = 'Lth site {}'.format(spectrum), marker = '+', s=4)
plt.scatter(Gs, rLrs, label = 'Lth site {}'.format(spectrum2), marker = 'x', s=4)
plt.axvline(Grg)
if G < Gp < 0 or G > Gp > 0:
plt.axvline(Gp, color='r')
plt.xlim(1.1*(2-start)*Gp, 0.9*start*Gp)
plt.xlabel('G')
plt.ylabel('r_k(G)')
plt.legend()
plt.subplot(3,1,3)
jumps = [ns[n-1] - ns[n] for ns in nsk]
jr = [nr[n-1] - nr[n] for nr in nsk_rgk]
plt.scatter(Gs*l, jumps, marker='o', label = '{} spectrum'.format(spectrum))
plt.scatter(Gs*l, jr, marker='x', label = 'RGK spectrum')
# plt.axhline(1, ls=':')
# plt.axhline(0, ls=':')
plt.axvline(Grg*l)
if G < Gp < 0 or G > Gp > 0:
plt.axvline(Gp*l, color='r')
plt.ylim(-0.5, 1.5)
plt.legend()
if __name__ == '__main__':
# compare_bethe()
# plt.show()
import pandas as pd
start = time.time()
# examine_deltas()
# compare_bethe()
plt.figure(figsize=(12,8))
plt.subplot(2,1,1)
Ls = np.array([600, 1200, 2400, 4800, 12000])
jumps = np.zeros(len(Ls))
for i, L in enumerate(Ls):
dens = float(sys.argv[1])
N = dens*L
jumps[i] = do_infinite(L, N)
finish = time.time()
print('Seconds elapsed: {}'.format(finish-start))
plt.legend()
plt.subplot(2,1,2)
plt.scatter(1./Ls, jumps)
plt.xlim(0, 1./Ls[0])
plt.ylim(0.85, 1.0)
plt.show()
df = pd.DataFrame({'L': Ls, 'Zstar': jumps})
df.to_csv('results/infinites_{}.csv'.format(int(dens*100)))