We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
gpu模型跑不起来,看着是配置没有对齐,但是相关配置已按要求设置,wenet的def infer没有被执行到 name: "streaming_wenet" platform: "ensemble" max_batch_size: 512 #MAX_BATCH
input [ { name: "WAV" data_type: TYPE_FP32 dims: [-1] }, { name: "WAV_LENS" data_type: TYPE_INT32 dims: [1] } ]
output [ { name: "TRANSCRIPTS" data_type: TYPE_STRING dims: [1] } ]
ensemble_scheduling { step [ { model_name: "feature_extractor" model_version: -1 input_map { key: "wav" value: "WAV" } input_map { key: "wav_lens" value: "WAV_LENS" } output_map { key: "speech" value: "SPEECH" } output_map { key: "speech_lengths" value: "SPEECH_LENGTHS" } }, { model_name: "encoder" model_version: -1 input_map { key: "speech" # Correct mapping here value: "SPEECH" } input_map { key: "speech_lengths" # Correct mapping here value: "SPEECH_LENGTHS" } output_map { key: "log_probs" value: "ctc_log_probs" } output_map { key: "log_probs_idx" value: "beam_log_probs_idx" } output_map { key: "chunk_out" value: "CHUNK_OUT" } output_map { key: "chunk_out_lens" value: "CHUNK_OUT_LENS" } }, { model_name: "wenet" model_version: -1 input_map { key: "log_probs" value: "LOG_PROBS" } input_map { key: "log_probs_idx" value: "LOG_PROBS_IDX" } input_map { key: "chunk_out" value: "CHUNK_OUT" } input_map { key: "chunk_out_lens" value: "CHUNK_OUT_LENS" } output_map { key: "OUTPUT0" value: "TRANSCRIPTS" } } ] }
name: "wenet" backend: "python" max_batch_size: 512 # 根据代码实现和需求支持批量大小,确保动态批次
parameters [ { key: "beam_size", value: { string_value: "10" } }, { key: "cutoff_prob", value: { string_value: "0.9999" } }, { key: "alpha", value: { string_value: "2" } }, { key: "beta", value: { string_value: "1" } }, { key: "vocab_path", value: { string_value: "/ws/onnx_model/units.txt" } }, { key: "lm_path", value: { string_value: "/ws/model_repo/language_model.bin" } }, { key: "hotwords_path", value: { string_value: "None" } }, { key: "bidecoder", value: { string_value: "1" } }, { key: "rescoring", value: { string_value: "1" } } ]
input [ { name: "log_probs" data_type: TYPE_FP16 # 确保匹配 batch_log_probs 的数据类型 dims: [-1, -1, 5235] # 动态批次,时间步长,词表大小 }, { name: "log_probs_idx" data_type: TYPE_INT64 # 确保匹配 batch_log_probs_idx 的数据类型 dims: [-1, -1, 10] # 动态批次,时间步长,beam_size }, { name: "chunk_out" data_type: TYPE_FP32 # 确保匹配 encoder 输出的类型 dims: [-1, -1, 256] # 动态批次,时间步长,特征维度 }, { name: "chunk_out_lens" data_type: TYPE_INT32 # 确保匹配 seq_lens 的数据类型 dims: [-1] # 动态批次 } ]
output [ { name: "OUTPUT0" data_type: TYPE_STRING # 确保匹配 final_result 的数据类型 dims: [1] # 动态批次大小 } ]
final_result
instance_group [ { count: 2 kind: KIND_CPU # 根据实现使用 CPU } ]
The text was updated successfully, but these errors were encountered:
No branches or pull requests
gpu模型跑不起来,看着是配置没有对齐,但是相关配置已按要求设置,wenet的def infer没有被执行到
name: "streaming_wenet"
platform: "ensemble"
max_batch_size: 512 #MAX_BATCH
input [
{
name: "WAV"
data_type: TYPE_FP32
dims: [-1]
},
{
name: "WAV_LENS"
data_type: TYPE_INT32
dims: [1]
}
]
output [
{
name: "TRANSCRIPTS"
data_type: TYPE_STRING
dims: [1]
}
]
ensemble_scheduling {
step [
{
model_name: "feature_extractor"
model_version: -1
input_map {
key: "wav"
value: "WAV"
}
input_map {
key: "wav_lens"
value: "WAV_LENS"
}
output_map {
key: "speech"
value: "SPEECH"
}
output_map {
key: "speech_lengths"
value: "SPEECH_LENGTHS"
}
},
{
model_name: "encoder"
model_version: -1
input_map {
key: "speech" # Correct mapping here
value: "SPEECH"
}
input_map {
key: "speech_lengths" # Correct mapping here
value: "SPEECH_LENGTHS"
}
output_map {
key: "log_probs"
value: "ctc_log_probs"
}
output_map {
key: "log_probs_idx"
value: "beam_log_probs_idx"
}
output_map {
key: "chunk_out"
value: "CHUNK_OUT"
}
output_map {
key: "chunk_out_lens"
value: "CHUNK_OUT_LENS"
}
},
{
model_name: "wenet"
model_version: -1
input_map {
key: "log_probs"
value: "LOG_PROBS"
}
input_map {
key: "log_probs_idx"
value: "LOG_PROBS_IDX"
}
input_map {
key: "chunk_out"
value: "CHUNK_OUT"
}
input_map {
key: "chunk_out_lens"
value: "CHUNK_OUT_LENS"
}
output_map {
key: "OUTPUT0"
value: "TRANSCRIPTS"
}
}
]
}
name: "wenet"
backend: "python"
max_batch_size: 512 # 根据代码实现和需求支持批量大小,确保动态批次
parameters [
{
key: "beam_size",
value: { string_value: "10" }
},
{
key: "cutoff_prob",
value: { string_value: "0.9999" }
},
{
key: "alpha",
value: { string_value: "2" }
},
{
key: "beta",
value: { string_value: "1" }
},
{
key: "vocab_path",
value: { string_value: "/ws/onnx_model/units.txt" }
},
{
key: "lm_path",
value: { string_value: "/ws/model_repo/language_model.bin" }
},
{
key: "hotwords_path",
value: { string_value: "None" }
},
{
key: "bidecoder",
value: { string_value: "1" }
},
{
key: "rescoring",
value: { string_value: "1" }
}
]
input [
{
name: "log_probs"
data_type: TYPE_FP16 # 确保匹配 batch_log_probs 的数据类型
dims: [-1, -1, 5235] # 动态批次,时间步长,词表大小
},
{
name: "log_probs_idx"
data_type: TYPE_INT64 # 确保匹配 batch_log_probs_idx 的数据类型
dims: [-1, -1, 10] # 动态批次,时间步长,beam_size
},
{
name: "chunk_out"
data_type: TYPE_FP32 # 确保匹配 encoder 输出的类型
dims: [-1, -1, 256] # 动态批次,时间步长,特征维度
},
{
name: "chunk_out_lens"
data_type: TYPE_INT32 # 确保匹配 seq_lens 的数据类型
dims: [-1] # 动态批次
}
]
output [
{
name: "OUTPUT0"
data_type: TYPE_STRING # 确保匹配
final_result
的数据类型dims: [1] # 动态批次大小
}
]
instance_group [
{
count: 2
kind: KIND_CPU # 根据实现使用 CPU
}
]
The text was updated successfully, but these errors were encountered: