-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
65 lines (46 loc) · 1.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding:utf-8 -*-
import os
import sys
o_path = os.getcwd()
sys.path.append(o_path)
from Classifier.ProcessingData import ProcessingData
from Classifier.Training import Training
from Spider.Spider import Crawler
def main():
raw_images_folder = './Dataset/Raw_Images_Folder/'
train_images_folder = './Dataset/Train_Images_Folder/'
test_images_folder = './Dataset/Test_Images_Folder/'
batch_size = 10
epochs = 100
crawler = Crawler(0.05)
# classes_num = int(input('Number of classes: '))
# for eve_keyword in range(classes_num):
# keyword = input('Keyword {}: '.format(eve_keyword + 1))
# page_num = int(input('Page Number: '))
# crawler.start("孟买猫", 1, 1)
# crawler.start("布偶猫", 1, 1)
# crawler.start("暹罗猫", 1, 1)
# crawler.start("英国短毛猫", 1, 1)
# catType = ['孟买猫', '布偶猫', '暹罗猫', '英国短毛猫']
# 读取 Dataset/Raw_images_folder 文件夹里的所有文件夹名 os.listdir()
type = os.listdir(raw_images_folder)
print(type)
# initialize
processing_data = ProcessingData(
Raw_Images_Folder=raw_images_folder,
Train_Folder=train_images_folder,
Test_Folder=test_images_folder,
Type=type,
)
# processing data
processing_data.initialize()
training = Training(
Train_Folder=train_images_folder,
Test_Folder=test_images_folder,
Batch_Size=batch_size,
Epochs=epochs,
)
# trianing
training.train()
if __name__ == '__main__':
main()