forked from ottiP/Paho_project_PCV_adult
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathITS_run_alltogether.R
142 lines (118 loc) · 4.95 KB
/
ITS_run_alltogether.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
rm(list = ls(all = TRUE))
### Load packages
library(coda)
library(rjags)
library(dplyr)
library(tidyverse)
library(HDInterval)
library(parallel)
library(pbapply)
library(lubridate)
## Include useful functions
source("./R/call.jags.ITS.R")
source("./R/run_jags_model.R")
#Outcome is the same for all countries
outcome_name="J12_J18_prim"
## Define model input
burnin = 10000
samples = 100000
model="ITS"
## Load and manipulate data:
country="AR"
intervention_date=as.Date("2012-01-01")
post_period=c(as.Date("2012-02-01"), as.Date('2012-12-01'))
eval_period=c(as.Date("2013-01-01"), as.Date('2019-12-01'))
pre_period_start = as.Date("2005-01-01")
post_period_start = as.Date("2012-01-01")
month1 <- 2012.0
month2 <- 2013.0
df <- readRDS("./Data/PAHO_adults_ICD10reformatted_subchapters.rds") %>%
filter(country==country & !is.na(agec) & monthdate>='2005-01-01' & agec %in% c(3,4,5,6,7)) %>%
dplyr::select(-country)
## ITS model
## Run the model over all age groups
mod1<-run_jags_model(df=df,model=model,country=country,data_prep_model=data_prep_model_ITS,burnin=burnin,
samples=samples,intervention_date=intervention_date,post_period=post_period,
eval_period=eval_period,month1=month1,month2=month2,outcome_name=outcome_name)
rr.summary <- bind_rows(map(mod1 , ~.[["rr.q"]]))
rr.summary
#Brazil
# Load the monthly dataset
country="BR"
intervention_date=as.Date("2010-03-01")
post_period=c(as.Date("2010-04-01"), as.Date('2011-03-01'))
eval_period=c(as.Date("2011-04-01"), as.Date('2019-12-01'))
pre_period_start = as.Date("2005-01-01")
post_period_start = as.Date("2010-04-01")
month1 <- 2010.0
month2 <- 2011.0
df <- readRDS("./Data/PAHO_adults_ICD10reformatted_subchapters.rds") %>%
filter(country==country & !is.na(agec) & monthdate>='2005-01-01' & agec %in% c(3,4,5,6,7)) %>%
dplyr::select(-country)
## ITS model
## Run the model over all age groups
mod1<-run_jags_model(df=df,model=model,country=country,data_prep_model=data_prep_model_ITS,burnin=burnin,
samples=samples,intervention_date=intervention_date,post_period=post_period,
eval_period=eval_period,month1=month1,month2=month2,outcome_name=outcome_name)
rr.summary <- bind_rows(map(mod1 , ~.[["rr.q"]]))
rr.summary
## Chile
country="CH"
intervention_date=as.Date("2011-01-01")
post_period=c(as.Date("2011-02-01"), as.Date('2012-01-01'))
eval_period=c(as.Date("2012-02-01"), as.Date('2018-12-01'))
pre_period_start = as.Date("2005-01-01")
post_period_start = as.Date("2011-02-01")
month1 <- 2011.0
month2 <- 2012.0
## Load and manipulate data:
df <- readRDS("./Data/PAHO_adults_ICD10reformatted_subchapters.rds") %>%
filter(country==country & !is.na(agec) & monthdate>='2005-01-01' & agec %in% c(3,4,5,6,7)) %>%
dplyr::select(-country)
## ITS model
## Run the model over all age groups
mod1<-run_jags_model(df=df,model=model,country=country,data_prep_model=data_prep_model_ITS,burnin=burnin,
samples=samples,intervention_date=intervention_date,post_period=post_period,
eval_period=eval_period,month1=month1,month2=month2,outcome_name=outcome_name)
rr.summary <- bind_rows(map(mod1 , ~.[["rr.q"]]))
rr.summary
## Colombia
# Load the monthly dataset
country="COL"
intervention_date=as.Date("2011-01-01")
post_period=c(as.Date("2011-02-01"), as.Date('2012-01-01'))
eval_period=c(as.Date("2012-02-01"), as.Date('2019-12-01'))
pre_period_start = as.Date("2005-01-01")
post_period_start = as.Date("2011-02-01")
month1 <- 2011.0
month2 <- 2012.0
df <- readRDS("./Data/PAHO_adults_ICD10reformatted_subchapters.rds") %>%
filter(country==country & !is.na(agec) & monthdate>='2005-01-01') %>%
dplyr::select(-country)
## ITS model
## Run the model over all age groups
mod1<-run_jags_model(df=df,model=model,country=country,data_prep_model=data_prep_model_ITS,burnin=burnin,
samples=samples,intervention_date=intervention_date,post_period=post_period,
eval_period=eval_period,month1=month1,month2=month2,outcome_name=outcome_name)
rr.summary <- bind_rows(map(mod1 , ~.[["rr.q"]]))
rr.summary
## Mexico
# Load the monthly dataset
country="MX"
intervention_date=as.Date("2008-01-01")
post_period=c(as.Date("2008-02-01"), as.Date('2009-01-01'))
eval_period=c(as.Date("2009-02-01"), as.Date('2019-12-01'))
pre_period_start = as.Date("1999-01-01")
post_period_start = as.Date("2008-02-01")
month1 <- 2008.0
month2 <- 2009.0
df <- readRDS("./Data/PAHO_adults_ICD10reformatted_subchapters.rds") %>%
filter(country==country & !is.na(agec) & monthdate>='1999-01-01') %>%
dplyr::select(-country)
## ITS model
## Run the model over all age groups
mod1<-run_jags_model(df=df,model=model,country=country,data_prep_model=data_prep_model_ITS,burnin=burnin,
samples=samples,intervention_date=intervention_date,post_period=post_period,
eval_period=eval_period,month1=month1,month2=month2,outcome_name=outcome_name)
rr.summary <- bind_rows(map(mod1 , ~.[["rr.q"]]))
rr.summary