-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchip8.fs
375 lines (357 loc) · 16.5 KB
/
chip8.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
module chip8
open System
open System.IO
open System.Runtime.Intrinsics.X86
open vt
type Register = byte
type MemoryAddress = uint16
/// Documentation from: http://devernay.free.fr/hacks/chip8/C8TECH10.HTM
type Instruction =
/// 0NNN:
/// Jump to a machine code routine at NNN.
/// This instruction is only used on the old computers on which Chip-8 was originally implemented. It is ignored by modern interpreters.
| JumpToMachineCode of MemoryAddress
/// 00E0:
/// Clear the display
| ClearScreen
/// 00EE:
/// The interpreter sets the program counter to the address at the top of the stack, then subtracts 1 from the stack pointer.
| Return
/// 1NNN:
/// The interpreter sets the program counter to nnn.
| JumpTo of MemoryAddress
/// 2NNN:
/// The interpreter increments the stack pointer, then puts the current PC on the top of the stack. The PC is then set to nnn.
| CallSubroutine of MemoryAddress
/// 3xNN:
/// The interpreter compares register vX to kk, and if they are equal, increments the program counter by 2.
| SkipNextIfRegisterEquals of vX: Register * value: byte
/// 4xNN:
/// The interpreter compares register vX to kk, and if they are not equal, increments the program counter by 2.
| SkipNextIfRegisterNotEquals of vX: Register * value: byte
/// 5xy0:
/// The interpreter compares register vX to register vY, and if they are equal, increments the program counter by 2.
| SkipNextIfRegistersEqual of vX: Register * vY: Register
/// 6xNN:
/// The interpreter puts the value kk into register vX.
| SetRegister of vX: Register * value: byte
/// 7xNN:
/// Adds the value kk to the value of register vX, then stores the result in vX.
| IncrementRegister of vX: Register * value: byte
/// 8xy0:
/// Set vX = vY.
/// Stores the value of register vY in register vX.
| SetvXFromvY of vX: Register * vY: Register
/// 8xy1:
/// Performs a bitwise OR on the values of vX and vY, then stores the result in vX. A bitwise OR compares the corrseponding bits from two values, and if either bit is 1, then the same bit in the result is also 1. Otherwise, it is 0.
| OR of vX: Register * vY: Register
/// 8xy2:
/// Performs a bitwise AND on the values of vX and vY, then stores the result in vX. A bitwise AND compares the corrseponding bits from two values, and if both bits are 1, then the same bit in the result is also 1. Otherwise, it is 0.
| AND of vX: Register * vY: Register
/// 8xy3:
/// Performs a bitwise exclusive OR on the values of vX and vY, then stores the result in vX. An exclusive OR compares the corrseponding bits from two values, and if the bits are not both the same, then the corresponding bit in the result is set to 1. Otherwise, it is 0.
| XOR of vX: Register * vY: Register
/// 8xy4:
/// The values of vX and vY are added together. If the result is greater than 8 bits (i.e., > 255,) VF is set to 1, otherwise 0. Only the lowest 8 bits of the result are kept, and stored in vX.
| ADD of vX: Register * vY: Register
/// 8xy5:
/// If vX > vY, then VF is set to 1, otherwise 0. Then vY is subtracted from vX, and the results stored in vX.
| SUB of vX: Register * vY: Register
/// 8xy6 - SHR vX {, vY}
/// If the least-significant bit of vX is 1, then VF is set to 1, otherwise 0. Then vX is divided by 2.
| SHR of vX: Register * vY: Register
/// 8xy7:
/// If vY > vX, then VF is set to 1, otherwise 0. Then vX is subtracted from vY, and the results stored in vX.
| SUBN of vX: Register * vY: Register
/// 8xyE - SHL vX {, vY}
/// If the most-significant bit of vX is 1, then VF is set to 1, otherwise to 0. Then vX is multiplied by 2.
| SHL of vX: Register * vY: Register
/// 9xy0:
/// The values of vX and vY are compared, and if they are not equal, the program counter is increased by 2.
| SkipNextIfRegistersNotEqual of vX: Register * vY: Register
/// ANNN:
/// The value of register I is set to nnn.
| SetI of MemoryAddress
/// BNNN
/// The program counter is set to nnn plus the value of V0.
| JumpToPlusV0 of MemoryAddress
/// CxNN
/// The interpreter generates a random number from 0 to 255, which is then ANDed with the value. The results are stored in vX. See instruction 8xy2 for more information on AND.
| SetRegisterRandom of vX: Register * value: byte
/// DxyN
/// The interpreter reads n bytes from memory, starting at the address stored in I. These bytes are then displayed as sprites on screen at coordinates (vX, vY). Sprites are XORed onto the existing screen. If this causes any pixels to be erased, VF is set to 1, otherwise it is set to 0. If the sprite is positioned so part of it is outside the coordinates of the display, it wraps around to the opposite side of the screen. See instruction 8xy3 for more information on XOR, and section 2.4, Display, for more information on the Chip-8 screen and sprites.
| DrawSprite of vX: Register * vY: Register * height: byte
/// Ex9E:
/// Checks the keyboard, and if the key corresponding to the value of vX is currently in the down position, PC is increased by 2.
| SkipIfKeyPressed of vX: Register
/// ExA1:
/// Checks the keyboard, and if the key corresponding to the value of vX is currently in the up position, PC is increased by 2.
| SkipIfKeyNotPressed of vX: Register
/// Fx07:
/// The value of DT is placed into vX.
| GetDelayTime of vX: Register
/// Fx0A:
/// All execution stops until a key is pressed, then the value of that key is stored in vX.
| WaitForKey of vX: Register
/// Fx15:
/// DT is set equal to the value of vX.
| SetDelayTime of vX: Register
/// Fx18:
/// ST is set equal to the value of vX.
| SetST of vX: Register
/// Fx1E:
/// The values of I and vX are added, and the results are stored in I.
| IncrementI of vX: Register
/// Fx29:
/// The value of I is set to the location for the hexadecimal sprite corresponding to the value of vX. See section 2.4, Display, for more information on the Chip-8 hexadecimal font.
| SetIFromSprite of vX: Register
/// Fx33:
/// The interpreter takes the decimal value of vX, and places the hundreds digit in memory at location in I, the tens digit at location I+1, and the ones digit at location I+2.
| StoreBCD of vX: Register
/// Fx55:
/// The interpreter copies the values of registers V0 through vX into memory, starting at the address in I.
| StoreRegisters of vEnd: byte
/// Fx65:
/// The interpreter reads values from memory starting at location I into registers V0 through vX.
| ReadRegisters of vEnd: byte
/// An opcode which failed to parse
| Unrecognized of uint16
with
member this.Recognized() =
match this with
| Unrecognized _ -> false
| _ -> true
let parseInstruction (opcode: uint16) =
let pullAddr opcode =
opcode &&& 0xFFFus
let pullRegAndByte opcode =
let vX = byte ((opcode &&& 0x0F00us) >>> 8)
let value = byte (opcode &&& 0x00FFus)
(vX, value)
let pullRegs opcode =
let vX = byte ((opcode &&& 0x0F00us) >>> 8)
let vY = byte ((opcode &&& 0x00F0us) >>> 4)
(vX, vY)
let pullRegsAndNibble opcode =
let (vX, vY) = pullRegs opcode
let nibble = byte (opcode &&& 0x000Fus)
(vX, vY, nibble)
match opcode &&& 0xF000us with
| 0x0000us ->
match opcode with
| 0x00E0us -> ClearScreen
| 0x00EEus -> Return
| _ -> JumpToMachineCode (pullAddr opcode)
| 0x1000us -> JumpTo (pullAddr opcode)
| 0x2000us -> CallSubroutine (pullAddr opcode)
| 0x3000us -> SkipNextIfRegisterEquals (pullRegAndByte opcode)
| 0x4000us -> SkipNextIfRegisterNotEquals (pullRegAndByte opcode)
| 0x5000us -> SkipNextIfRegistersEqual (pullRegs opcode)
| 0x6000us -> SetRegister (pullRegAndByte opcode)
| 0x7000us -> IncrementRegister (pullRegAndByte opcode)
| 0x8000us ->
let (vX, vY, nibble) = pullRegsAndNibble opcode
match nibble with
| 0x0uy -> SetvXFromvY (vX, vY)
| 0x1uy -> OR (vX, vY)
| 0x2uy -> AND (vX, vY)
| 0x3uy -> XOR (vX, vY)
| 0x4uy -> ADD (vX, vY)
| 0x5uy -> SUB (vX, vY)
| 0x6uy -> SHR (vX, vY)
| 0x7uy -> SUBN (vX, vY)
| 0xEuy -> SHL (vX, vY)
| _ -> Unrecognized opcode
| 0x9000us -> SkipNextIfRegistersNotEqual (pullRegs opcode)
| 0xA000us -> SetI (pullAddr opcode)
| 0xB000us -> JumpToPlusV0 (pullAddr opcode)
| 0xC000us -> SetRegisterRandom (pullRegAndByte opcode)
| 0xD000us -> DrawSprite <| pullRegsAndNibble opcode
| 0xE000us ->
let (vX, b) = pullRegAndByte opcode
match b with // b is the last two digits of the opcode
| 0x9Euy -> SkipIfKeyPressed vX
| 0xA1uy -> SkipIfKeyNotPressed vX
| _ -> Unrecognized opcode
| 0xF000us ->
let vX = byte ((opcode &&& 0x0F00us) >>> 8)
match (opcode &&& 0xF0FFus) with
| 0xF007us -> GetDelayTime vX
| 0XF00Aus -> WaitForKey vX
| 0xF015us -> SetDelayTime vX
| 0xF018us -> SetST vX
| 0xF01Eus -> IncrementI vX
| 0xF029us -> SetIFromSprite vX
| 0xF033us -> StoreBCD vX
| 0xF055us -> StoreRegisters vX
| 0xF065us -> ReadRegisters vX
| _ -> Unrecognized opcode
| _ -> Unrecognized opcode
let toOpcode (bs: byte[]) =
match bs with
| [| x; y |] ->
((uint16 x) <<< 8) ||| (uint16 y)
| _ ->
failwith "Invalid byte array: instructions can only be two bytes"
type Chip8 =
{
PC: uint16
I: uint16
DelayTimer: byte
SoundTimer: byte
Stack: uint16 list
Registers: Map<byte, byte>
Memory: Map<uint16, byte>
Screen: Map<int, byte>
}
with
static member screenSize = 2048
static member memorySize = 4096
static member create(rom: byte[]) =
{
PC = 0x200us; I = 0us; DelayTimer = 0uy; SoundTimer = 0uy;
Stack = []
Registers = (Map.empty, [0uy..15uy]) ||> List.fold (fun regs i -> regs.Add(i, 0uy))
Memory = Map.ofArray [|
for i in 0us..511us do yield (i, 0uy)
yield! (rom |> Array.mapi (fun index byte -> (uint16 (index + 512), byte)))
for i in 0..(Chip8.memorySize - 512 - rom.Length) do yield (uint16 (i + 512 + rom.Length), 0uy)
|]
Screen = Map.ofArray [| for i in 0..2047 do yield (i, 0uy) |]
}
let applyInstruction (instruction: Instruction) (c8: Chip8) =
// printfn "%A" instruction
let c8 = { c8 with PC = c8.PC + 2us }
match instruction with
| ADD(vX, vY) ->
let x = c8.Registers[vX]
let y = c8.Registers[vY]
let result = int x + int y
{ c8 with Registers = c8.Registers.Add(vX, x + y).Add(0xFuy, if result > 255 then 1uy else 0uy) }
| AND(vX, vY) -> { c8 with Registers = c8.Registers.Add(vX, c8.Registers[vX] &&& c8.Registers[vY]) }
| OR(vX, vY) -> { c8 with Registers = c8.Registers.Add(vX, c8.Registers[vX] ||| c8.Registers[vY]) }
| IncrementI vX -> { c8 with I = c8.I + uint16 c8.Registers[vX] }
| SHL(vX, vY) ->
let x = c8.Registers[vX]
{ c8 with Registers = c8.Registers.Add(vX, x * 2uy).Add(0xFuy, x >>> 7) }
| SHR(vX, vY) ->
let x = c8.Registers[vX]
{ c8 with Registers = c8.Registers.Add(vX, x * 2uy).Add(0xFuy, x % 1uy) }
| JumpToMachineCode s -> c8
| SUB(vX, vY) ->
let x = c8.Registers[vX]
let y = c8.Registers[vY]
{ c8 with Registers = c8.Registers.Add(vX, x - y).Add(0xFuy, if x > y then 1uy else 0uy) }
| SUBN(vX, vY) ->
let x = c8.Registers[vX]
let y = c8.Registers[vY]
{ c8 with Registers = c8.Registers.Add(vX, y - x).Add(0xFuy, if y > x then 1uy else 0uy) }
| SetST vX -> { c8 with SoundTimer = c8.Registers[vX] }
| StoreRegisters vEnd ->
(c8, [0uy..vEnd]) ||> List.fold (fun c8 register -> { c8 with Memory = c8.Memory.Add(c8.I + uint16 register, c8.Registers[register]) })
| Unrecognized instr -> c8
| WaitForKey vX -> c8
| XOR(vX, vY) -> { c8 with Registers = c8.Registers.Add(vX, c8.Registers[vX] ^^^ c8.Registers[vY]) }
| SkipIfKeyPressed vX -> c8
| SkipIfKeyNotPressed vX -> c8
| ClearScreen ->
{ c8 with // Screen = Array.create Chip8.screenSize 0uy
Screen = Map.ofArray [| for i in 0..2047 do yield (i, 0uy) |]
}
| Return ->
match c8.Stack with
| addr::stack ->
{ c8 with PC = List.head c8.Stack //+ 2us
Stack = List.tail c8.Stack
}
| [] ->
failwith "Return called in program while stack was empty"
| JumpTo address ->
{ c8 with PC = address }
| JumpToPlusV0 address ->
{ c8 with PC = address + uint16 c8.Registers.[0uy] }
| CallSubroutine address ->
{ c8 with PC = address
Stack = c8.PC::c8.Stack
}
| SkipNextIfRegisterEquals (vX, value) ->
if c8.Registers.[vX] = value then
{ c8 with PC = c8.PC + 2us }
else
c8
| SkipNextIfRegisterNotEquals (vX, value) ->
if c8.Registers.[vX] <> value then
{ c8 with PC = c8.PC + 2us }
else
c8
| SkipNextIfRegistersEqual (vX, vY) ->
if c8.Registers.[vX] = c8.Registers.[vY] then
{ c8 with PC = c8.PC + 2us }
else
c8
| SkipNextIfRegistersNotEqual (vX, vY) ->
if c8.Registers.[vX] <> c8.Registers.[vY] then
{ c8 with PC = c8.PC + 2us }
else
c8
| SetRegister (vX, value) ->
{ c8 with Registers = c8.Registers.Add(vX, value) }
| IncrementRegister (vX, value) ->
{ c8 with Registers = c8.Registers.Add(vX, c8.Registers.[vX] + value) }
| SetvXFromvY (vX, vY) ->
{ c8 with Registers = c8.Registers.Add(vX, c8.Registers.[vY]) }
| SetI address ->
{ c8 with I = address }
| DrawSprite (vX, vY, height) ->
// todo: is this modulus 64uy correct ?
let x = int (c8.Registers.[vX] % 64uy)
let y = int (c8.Registers.[vY])
let mutable c8 = c8
let mutable setVF = false
for row in 0..(int height - 1) do
let y = y + row
let sprite = c8.Memory.[c8.I + uint16 row]
for column in 0..7 do
let x = x + column
let index = (y * 64) + x
let pixel = (sprite >>> (7 - int column)) &&& 1uy
if (x < 64 && pixel = 1uy) then
let existingPixel = c8.Screen[index]
if existingPixel = 1uy then
setVF <- true
let existingPixel = c8.Screen[index]
let newValue = existingPixel ^^^ 1uy
Cursor.move (x * 2) y
if newValue = 0uy then
printf "\x1B[38;2;0;0;0m"
printf " "
else
let hue = (360.0 * (double index / 2048.0))
let (r, g, b) = color.rgb (int hue)
printf $"\x1B[38;2;{r};{g};{b}m"
printf "\u2588"
// c8.SetScreen (byte x) (byte y) (existingPixel ^^^ 1uy)
c8 <- { c8 with Screen = c8.Screen.Add(index, existingPixel ^^^ 1uy) }
if not setVF then fflush io.stdout // Conditionally flushing helps reduce flicker
{ c8 with Registers = c8.Registers.Add(0xFuy, if setVF then 1uy else 0uy) }
| StoreBCD vX ->
let value = c8.Registers[vX]
{ c8 with
Memory = c8.Memory.Add(c8.I, value / 100uy)
.Add(c8.I + 1us, value / 10uy)
.Add(c8.I + 2us, value % 10uy) }
| ReadRegisters vEnd ->
let mutable registers = c8.Registers
for i in 0uy..vEnd do registers <- registers.Add (i, c8.Memory[(c8.I + uint16 i)])
{ c8 with Registers = registers }
| SetIFromSprite vX ->
{ c8 with I = uint16 <| c8.Registers[vX] * 5uy; }
| SetDelayTime vX ->
{ c8 with DelayTimer = c8.Registers[vX] }
| GetDelayTime vX ->
{ c8 with Registers = c8.Registers.Add(vX, c8.DelayTimer) }
| SetRegisterRandom(vX, value) ->
let value =
let r = Random()
value &&& byte (r.NextDouble() * 256.0)
{ c8 with Registers = c8.Registers.Add(vX, value) }