-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransformer_multi.py
253 lines (209 loc) · 10.6 KB
/
transformer_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from typing import List
import random
import pandas as pd
import numpy as np
import json
import pathlib
import torch
from util import CustomDataset, CustomTrainer, compute_metrics, prep_data_multi, output_and_store_results, create_config_key
from argparse import ArgumentParser
import transformers
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
from transformers import Trainer, TrainingArguments
from transformers.trainer_callback import EarlyStoppingCallback
from sklearn.model_selection import train_test_split
# Set seed for reproducibility
#set_seed(2021)
def run_transformer_multi(input_path: str, setting_keys: List[str] = None):
"""
:param input_path: Path to settings.json (must be placed in the same directory as the "datasets"-folder)
:param setting_keys: Selected setting keys if only some of the model configurations in settings.json are to be used
:return:
"""
# Read settings file
with open(f'{input_path}') as file:
settings = json.load(file)
for setting_key, setting_data in settings.items():
# Only run the setting if the key is in the list of settings or no setting_keys are provided
if setting_keys is None:
pass
elif setting_keys is not None and setting_key not in setting_keys:
continue
# Get name of settings
settings_name = create_config_key(setting_data)
# Get the relevant data from the settings
# Set model global to use it inside model_init function
global model
model = setting_data.get("model")
n_runs = setting_data.get("n_runs")
use_description = setting_data.get("use_description")
run_parameter_search = setting_data.get("hyperparameter_search")
train_langs = setting_data.get("train_lang")
test_langs = setting_data.get("eval_lang")
category = setting_data.get("category")
params = setting_data.get("model_parameters")
# Process the categories separately
dataset_p = pathlib.Path(input_path).parent.joinpath("datasets")
train_data_p = dataset_p.joinpath(f'multi_class_train_set_{category}.csv')
test_data_p = dataset_p.joinpath(f'multi_class_test_set_{category}.csv')
# Read the data
train_data = pd.read_csv(train_data_p)
test_data = pd.read_csv(test_data_p)
# Filter the train data:
train_data = train_data.loc[train_data["lang"].isin(train_langs)]
# Prepare the train and test data for the experiments and get the mapping of the labels
train_data, test_data, label_dict_inv = prep_data_multi(train_data, test_data, use_description)
# Tokenize the text features
# Instantiate Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model)
# Encode the text features for training (test data is encoded later)
train_encodings = tokenizer(train_data.content.tolist(), truncation=True, padding=True)
# Create Trainset
train_set = CustomDataset(train_encodings, train_data.label.tolist())
# Load Transformer Model
# Set model global to use it inside model_init function
global model_config
model_config = AutoConfig.from_pretrained(model, num_labels=train_data["label"].nunique())
transformer_model = AutoModelForSequenceClassification.from_pretrained(model, config=model_config)
# Create Trainer Object
# Use GPU, if available
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# Set compute warmup steps
params['warmup_steps'] = np.ceil(len(train_data) / (params['per_device_train_batch_size'] * params['gradient_accumulation_steps']))
# Run hyperparameter tuning, if specified by settings.json
if run_parameter_search:
# Set model parameters for tuning with TrainingArguments-object
training_args = TrainingArguments(
output_dir=f'./model',
overwrite_output_dir=params.get('overwrite_output_dir'),
num_train_epochs=params.get('num_train_epochs'),
save_total_limit=params.get('save_total_limit'),
per_device_train_batch_size=params.get('per_device_train_batch_size'),
per_device_eval_batch_size=params.get('per_device_eval_batch_size'),
gradient_accumulation_steps=params.get('gradient_accumulation_steps'),
warmup_steps=params.get('warmup_steps'),
weight_decay=params.get('weight_decay'),
evaluation_strategy=params.get('evaluation_strategy'),
load_best_model_at_end=params.get('load_best_model_at_end'),
metric_for_best_model=params.get('metric_for_best_model')
)
# We stop early, if we do not improve on the validation set
early_stopping = EarlyStoppingCallback(early_stopping_patience=3)
trainer = CustomTrainer(
model_init=model_init,
args=training_args,
train_dataset=train_set,
compute_metrics=compute_metrics,
callbacks=[early_stopping]
)
best_run = tune_hyperparameters(trainer, tokenizer, train_data)
# Create dict to save scores for every run
scores_per_lang = dict((lang, list()) for lang in test_langs)
avg_scores_per_lang = dict()
results_per_lang = dict((lang, list()) for lang in test_langs)
# Run every Experiment n-times
for i in range(n_runs):
# Change args and reinstantiate trainer for training on whole trainset (no early stopping here)
# Set new seed for different results in each run
training_args = TrainingArguments(
output_dir=f'./model',
overwrite_output_dir=params.get('overwrite_output_dir'),
num_train_epochs=params.get('num_train_epochs'),
learning_rate=params.get('learning_rate'),
save_total_limit=params.get('save_total_limit'),
per_device_train_batch_size=params.get('per_device_train_batch_size'),
per_device_eval_batch_size=params.get('per_device_eval_batch_size'),
gradient_accumulation_steps=params.get('gradient_accumulation_steps'),
warmup_steps=params.get('warmup_steps'),
weight_decay=params.get('weight_decay'),
seed=random.randint(0, 2021)
)
trainer = CustomTrainer(
model_init=model_init,
args=training_args,
train_dataset=train_set,
compute_metrics=compute_metrics
)
# Use best parameters for new trainer, if parameter search was run
if run_parameter_search:
for parameter, value in best_run.hyperparameters.items():
setattr(trainer.args, parameter, value)
# Train the model
transformer_model.to(device)
trainer.train()
# # Save model and tokenizer
# trainer.save_model()
# if trainer.is_world_process_zero():
# tokenizer.save_pretrained(f'./model')
# Run predictions
for lang in test_langs:
# Subset the test data
test_data_lang = test_data.loc[test_data['lang'] == lang]
# Encode Text Features for testing
test_encodings_lang = tokenizer(test_data_lang.content.tolist(), truncation=True, padding=True)
# Create Test Set
test_set_lang = CustomDataset(test_encodings_lang, test_data_lang.label.tolist())
# Predict and compute metrics to measure performance of model
pred = trainer.predict(test_set_lang)
# Map the predictions back to cluster ids
pred_cl_id = np.array([label_dict_inv[x] for x in pred[0].argmax(-1)])
scores_per_lang[lang].append(pred[2]['eval_f1'])
results_per_lang[lang].append(pred_cl_id)
# Output results
all_scores = scores_per_lang[lang]
avg_scores_per_lang[lang] = np.mean(scores_per_lang[lang])
output_and_store_results(setting_data, settings_name, category, str(train_langs), lang,
avg_scores_per_lang[lang], all_scores,
str({"learning_rate": trainer.args.learning_rate}),
input_path, results_per_lang[lang])
def tune_hyperparameters(trainer, tokenizer, train_data):
"""
Runs hyperparameter tuning and returns the best parameter configuration found.
:param trainer:
:param tokenizer:
:param train_data:
:return:
"""
tune_data, val_data, tune_label, val_label = train_test_split(
train_data, train_data.label,
test_size=0.2, stratify=train_data.label,
random_state=42
)
tune_encodings = tokenizer(tune_data.content.tolist(), truncation=True, padding=True)
val_encodings = tokenizer(val_data.content.tolist(), truncation=True, padding=True)
tune_set = CustomDataset(tune_encodings, tune_data.label.tolist())
val_set = CustomDataset(val_encodings, val_data.label.tolist())
# Hand tuning and validation set to trainer
setattr(trainer, 'train_dataset', tune_set)
setattr(trainer, 'eval_dataset', val_set)
# Search Parameters
best_run = trainer.hyperparameter_search(
hp_space=hp_space,
n_trials=5,
direction="maximize",
compute_objective=lambda metrics: metrics['eval_f1']
)
return best_run
def model_init():
"""
Function to reinitialize the model during hyperparameter tuning.
:return:
"""
return AutoModelForSequenceClassification.from_pretrained(model, config=model_config)
def hp_space(trial):
"""
Function to define the hyperparameter space searched during tuning.
:param trial:
:return:
"""
return {
# Only tune learning rate for now
"learning_rate": trial.suggest_float("learning_rate", 5e-6, 1e-4, log=True),
}
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-i", "--input", type=str,
help="path to project", metavar="path")
args = parser.parse_args()
input_path = args.input
run_transformer_multi(input_path)