-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
159 lines (133 loc) · 5.77 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import sys
import os
import csv
import cPickle as pickle
import glob
import numpy as np
import pandas as pd
from features import extract_features, extract_features2, get_all_features
def load_model(model_dir, verbose=True):
with open(model_dir, 'rb') as fi:
m = pickle.load(fi)
return m
def parse_dataframe(df):
parse_cell = lambda cell: np.fromstring(cell, dtype=np.float, sep=" ")
df = df.applymap(parse_cell)
return df
def read_data(filename_pairs, filename_info, symmetrize=True):
df_pairs = parse_dataframe(pd.read_csv(filename_pairs, index_col="SampleID"))
df_info = pd.read_csv(filename_info, index_col="SampleID")
features = pd.concat([df_pairs, df_info], axis=1)
if symmetrize:
features_inverse = features.copy()
features_inverse['A'] = features['B']
features_inverse['A type'] = features['B type']
features_inverse['B'] = features['A']
features_inverse['B type'] = features['A type']
original_index = np.array(zip(features.index, features.index)).flatten()
features = pd.concat([features, features_inverse])
features.index = range(0,len(features),2)+range(1,len(features),2)
features.sort(inplace=True)
features.index = original_index
features.index.name = "SampleID"
return features
def symmetrize_features(ori_features, features, feature_def=None):
ori_features_inverse = ori_features.copy()
ori_features_inverse['A'] = ori_features['B']
ori_features_inverse['A type'] = ori_features['B type']
ori_features_inverse['B'] = ori_features['A']
ori_features_inverse['B type'] = ori_features['A type']
features_inverse = extract_features2(ori_features_inverse, features, feature_def)
original_index = np.array(zip(features.index, features.index)).flatten()
features = pd.concat([features, features_inverse])
features.index = range(0,len(features),2)+range(1,len(features),2)
features.sort(inplace=True)
features.index = original_index
features.index.name = "SampleID"
return features
def write_predictions(pred_dir, test, predictions):
writer = csv.writer(open(pred_dir, "w"), lineterminator="\n")
rows = [x for x in zip(test.index, predictions)]
writer.writerow(("SampleID", "Target"))
writer.writerows(rows)
def main():
if len(sys.argv) < 3:
print "USAGE: python predict.py input_dir output_dir"
return -1
input_dir = sys.argv[1]
output_dir = sys.argv[2]
symmetrize = True
# Get the file names
filename_pairs = glob.glob(os.path.join(input_dir, '*_pairs.csv'))
if len(filename_pairs)!=1:
print('No or multiple pairs.csv files')
exit(1)
filename_pairs = filename_pairs[0]
filename_info = glob.glob(os.path.join(input_dir, '*_publicinfo.csv'))
if len(filename_info)!=1:
print('No or multiple publicinfo.scv files')
exit(1)
filename_info = filename_info[0]
basename = filename_pairs[:-filename_pairs[::-1].index('_')-1]
if filename_info[:-filename_info[::-1].index('_')-1] != basename:
print('Different basenames in publicinfo.csv and pairs.csv files')
exit(1)
# Remove the path name
try:
dataset = basename[-basename[::-1].index(os.sep):]
except:
dataset = basename
test_ori = read_data(filename_pairs, filename_info, False)
print "Loading the classifier"
prog_dir = os.path.dirname(os.path.abspath(__file__))
amodel = load_model(os.path.join(prog_dir, 'models', "model2.pkl"))
if symmetrize:
ccmodel = load_model(os.path.join(prog_dir, 'models', "ccmodel.pkl"))
cnmodel = load_model(os.path.join(prog_dir, 'models', "cnmodel.pkl"))
nnmodel = load_model(os.path.join(prog_dir, 'models', "nnmodel.pkl"))
else:
for m in amodel.systems:
m.symmetrize = symmetrize
mymodel = load_model(os.path.join(prog_dir, 'models', "model_t.pkl"))
mymodel.weights = [0.17275686, 0.1424602, 0.14824986, 0.45374324, 0.08278984]
mymodel.weights = np.array(mymodel.weights) / sum(mymodel.weights)
print "Extracting features"
all_features_clean, used_feature_names = get_all_features()
test = extract_features(test_ori, all_features_clean)
test = symmetrize_features(test_ori, test, all_features_clean)
test = test[['A type', 'B type'] + list(used_feature_names)]
print "Making predictions"
aptest = amodel.predict(test)
myptest = mymodel.predict(test)
if symmetrize:
BINARY = 0 #"Binary"
CATEGORICAL = 1 #"Categorical"
NUMERICAL = 2 #"Numerical"
ccfilter = ((test['A type'] != NUMERICAL) & (test['B type'] != NUMERICAL))
cnfilter = ((test['A type'] != NUMERICAL) & (test['B type'] == NUMERICAL))
ncfilter = ((test['A type'] == NUMERICAL) & (test['B type'] != NUMERICAL))
nnfilter = ((test['A type'] == NUMERICAL) & (test['B type'] == NUMERICAL))
ptest = np.zeros((4,test.shape[0]))
ccptest = ccmodel.predict(test[ccfilter])
cnptest = cnmodel.predict(test[cnfilter])
nnptest = nnmodel.predict(test[nnfilter])
ptest[0, ccfilter] = ccptest
ptest[0, cnfilter] = cnptest
ptest[0, ncfilter] = -cnptest
ptest[1, nnfilter] = nnptest
ptest[2, :] = aptest
ptest[3, :] = myptest
wopt = [0.80, 1.00, 1.75, 1.75]
print 'wopt = ', wopt
predictions = np.dot(wopt, ptest)
else:
predictions = aptest
output_filename = dataset + "_predict.csv"
print("Writing predictions to " + output_filename)
submission_dir = os.path.join(output_dir, output_filename)
if symmetrize:
write_predictions(submission_dir, test[0::2], predictions[0::2])
else:
write_predictions(submission_dir, test, predictions)
if __name__=="__main__":
main()