-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeatures.py
326 lines (264 loc) · 23.4 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import numpy as np
from sklearn.base import BaseEstimator
import pandas as pd
import operator
from estimator_base import *
from features_base import *
BINARY = "Binary"
CATEGORICAL = "Categorical"
NUMERICAL = "Numerical"
class FeatureMapper:
def __init__(self, features):
self.features = features
def fit(self, X, y=None):
for feature_name in self.features:
extractor.fit(X[feature_name].values[:,np.newaxis], y)
def transform(self, X):
return X[self.features].as_matrix()
def fit_transform(self, X, y=None):
return self.transform(X)
class SimpleTransform(BaseEstimator):
def __init__(self, transformer):
self.transformer = transformer
def fit(self, X, y=None):
return self
def fit_transform(self, X, y=None):
return self.transform(X)
def transform(self, X, y=None):
return np.array([self.transformer(x) for x in X], ndmin=2).T
class MultiColumnTransform(BaseEstimator):
def __init__(self, transformer):
self.transformer = transformer
def fit(self, X, y=None):
return self
def fit_transform(self, X, y=None):
return self.transform(X)
def transform(self, X, y=None):
return np.array([self.transformer(*x[1]) for x in X.iterrows()], ndmin=2).T
def get_all_features():
all_features = [
('Max', 'A', SimpleTransform(max)),
('Max', 'B', SimpleTransform(max)),
('Min', 'A', SimpleTransform(min)),
('Min', 'B', SimpleTransform(min)),
('Numerical', 'A type', SimpleTransform(lambda x: int(numerical(x)))),
('Numerical', 'B type', SimpleTransform(lambda x: int(numerical(x)))),
('Sub', ['Numerical[A type]','Numerical[B type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Numerical[A type],Numerical[B type]]', SimpleTransform(abs)),
('Number of Samples', 'A', SimpleTransform(len)),
('Log', 'Number of Samples[A]', SimpleTransform(np.log)),
('Number of Unique Samples', 'A', SimpleTransform(count_unique)),
('Number of Unique Samples', 'B', SimpleTransform(count_unique)),
('Max', ['Number of Unique Samples[A]','Number of Unique Samples[B]'], MultiColumnTransform(max)),
('Min', ['Number of Unique Samples[A]','Number of Unique Samples[B]'], MultiColumnTransform(min)),
('Sub', ['Number of Unique Samples[A]','Number of Unique Samples[B]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Number of Unique Samples[A],Number of Unique Samples[B]]', SimpleTransform(abs)),
('Log', 'Number of Unique Samples[A]', SimpleTransform(np.log)),
('Log', 'Number of Unique Samples[B]', SimpleTransform(np.log)),
('Max', ['Log[Number of Unique Samples[A]]','Log[Number of Unique Samples[B]]'], MultiColumnTransform(max)),
('Min', ['Log[Number of Unique Samples[A]]','Log[Number of Unique Samples[B]]'], MultiColumnTransform(min)),
('Sub', ['Log[Number of Unique Samples[A]]','Log[Number of Unique Samples[B]]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Log[Number of Unique Samples[A]],Log[Number of Unique Samples[B]]]', SimpleTransform(abs)),
('Ratio of Unique Samples', 'A', SimpleTransform(count_unique_ratio)),
('Ratio of Unique Samples', 'B', SimpleTransform(count_unique_ratio)),
('Max', ['Ratio of Unique Samples[A]','Ratio of Unique Samples[B]'], MultiColumnTransform(max)),
('Min', ['Ratio of Unique Samples[A]','Ratio of Unique Samples[B]'], MultiColumnTransform(min)),
('Sub', ['Ratio of Unique Samples[A]','Ratio of Unique Samples[B]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Ratio of Unique Samples[A],Ratio of Unique Samples[B]]', SimpleTransform(abs)),
('Normalized Value', ['A','A type'], MultiColumnTransform(normalize)),
('Normalized Value', ['B','B type'], MultiColumnTransform(normalize)),
('Count Value', ['A','A type'], MultiColumnTransform(count_value), ['Normalized Value[A,A type]']),
('Count Value', ['B','B type'], MultiColumnTransform(count_value), ['Normalized Value[B,B type]']),
('DisSeq', ['A','A type'], MultiColumnTransform(discrete_seq)),
('DisSeq', ['B','B type'], MultiColumnTransform(discrete_seq)),
('DisProb', ['A','A type'], MultiColumnTransform(discrete_probability), ['DisSeq[A,A type]']),
('DisProb', ['B','B type'], MultiColumnTransform(discrete_probability), ['DisSeq[B,B type]']),
('Normalized Entropy Baseline', ['A','A type'], MultiColumnTransform(normalized_entropy_baseline), ['Normalized Value[A,A type]']),
('Normalized Entropy Baseline', ['B','B type'], MultiColumnTransform(normalized_entropy_baseline), ['Normalized Value[B,B type]']),
('Max', ['Normalized Entropy Baseline[A,A type]','Normalized Entropy Baseline[B,B type]'], MultiColumnTransform(max)),
('Min', ['Normalized Entropy Baseline[A,A type]','Normalized Entropy Baseline[B,B type]'], MultiColumnTransform(min)),
('Sub', ['Normalized Entropy Baseline[A,A type]','Normalized Entropy Baseline[B,B type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Normalized Entropy Baseline[A,A type],Normalized Entropy Baseline[B,B type]]', SimpleTransform(abs)),
('Normalized Entropy', ['A','A type'], MultiColumnTransform(normalized_entropy), ['Count Value[A,A type]']),
('Normalized Entropy', ['B','B type'], MultiColumnTransform(normalized_entropy), ['Count Value[B,B type]']),
('Max', ['Normalized Entropy[A,A type]','Normalized Entropy[B,B type]'], MultiColumnTransform(max)),
('Min', ['Normalized Entropy[A,A type]','Normalized Entropy[B,B type]'], MultiColumnTransform(min)),
('Sub', ['Normalized Entropy[A,A type]','Normalized Entropy[B,B type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Normalized Entropy[A,A type],Normalized Entropy[B,B type]]', SimpleTransform(abs)),
('IGCI', ['A','A type','B','B type'], MultiColumnTransform(igci), ['Normalized Value[A,A type]', 'Normalized Value[B,B type]']),
('IGCI', ['B','B type','A','A type'], MultiColumnTransform(igci), ['Normalized Value[B,B type]', 'Normalized Value[A,A type]']),
('Sub', ['IGCI[A,A type,B,B type]','IGCI[B,B type,A,A type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[IGCI[A,A type,B,B type],IGCI[B,B type,A,A type]]', SimpleTransform(abs)),
('Gaussian Divergence', ['A','A type'], MultiColumnTransform(gaussian_divergence), ['Count Value[A,A type]']),
('Gaussian Divergence', ['B','B type'], MultiColumnTransform(gaussian_divergence), ['Count Value[B,B type]']),
('Max', ['Gaussian Divergence[A,A type]','Gaussian Divergence[B,B type]'], MultiColumnTransform(max)),
('Min', ['Gaussian Divergence[A,A type]','Gaussian Divergence[B,B type]'], MultiColumnTransform(min)),
('Sub', ['Gaussian Divergence[A,A type]','Gaussian Divergence[B,B type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Gaussian Divergence[A,A type],Gaussian Divergence[B,B type]]', SimpleTransform(abs)),
('Uniform Divergence', ['A','A type'], MultiColumnTransform(uniform_divergence), ['Count Value[A,A type]']),
('Uniform Divergence', ['B','B type'], MultiColumnTransform(uniform_divergence), ['Count Value[B,B type]']),
('Max', ['Uniform Divergence[A,A type]','Uniform Divergence[B,B type]'], MultiColumnTransform(max)),
('Min', ['Uniform Divergence[A,A type]','Uniform Divergence[B,B type]'], MultiColumnTransform(min)),
('Sub', ['Uniform Divergence[A,A type]','Uniform Divergence[B,B type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Uniform Divergence[A,A type],Uniform Divergence[B,B type]]', SimpleTransform(abs)),
('Discrete Entropy', ['A','A type'], MultiColumnTransform(discrete_entropy), ['DisProb[A,A type]']),
('Discrete Entropy', ['B','B type'], MultiColumnTransform(discrete_entropy), ['DisProb[B,B type]']),
('Max', ['Discrete Entropy[A,A type]','Discrete Entropy[B,B type]'], MultiColumnTransform(max)),
('Min', ['Discrete Entropy[A,A type]','Discrete Entropy[B,B type]'], MultiColumnTransform(min)),
('Sub', ['Discrete Entropy[A,A type]','Discrete Entropy[B,B type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Discrete Entropy[A,A type],Discrete Entropy[B,B type]]', SimpleTransform(abs)),
('Normalized Discrete Entropy', ['A','A type'], MultiColumnTransform(normalized_discrete_entropy), ['Discrete Entropy[A,A type]', 'Number of Unique Samples[A]']),
('Normalized Discrete Entropy', ['B','B type'], MultiColumnTransform(normalized_discrete_entropy), ['Discrete Entropy[B,B type]', 'Number of Unique Samples[B]']),
('Max', ['Normalized Discrete Entropy[A,A type]','Normalized Discrete Entropy[B,B type]'], MultiColumnTransform(max)),
('Min', ['Normalized Discrete Entropy[A,A type]','Normalized Discrete Entropy[B,B type]'], MultiColumnTransform(min)),
('Sub', ['Normalized Discrete Entropy[A,A type]','Normalized Discrete Entropy[B,B type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Normalized Discrete Entropy[A,A type],Normalized Discrete Entropy[B,B type]]', SimpleTransform(abs)),
('Discrete Joint Entropy', ['A','A type','B','B type'], MultiColumnTransform(discrete_joint_entropy), ['DisSeq[A,A type]', 'DisSeq[B,B type]']),
('Normalized Discrete Joint Entropy', ['A','A type','B','B type'], MultiColumnTransform(normalized_discrete_joint_entropy), ['Discrete Joint Entropy[A,A type,B,B type]']),
('Discrete Conditional Entropy', ['A','A type','B','B type'], MultiColumnTransform(discrete_conditional_entropy), ['Discrete Joint Entropy[A,A type,B,B type]', 'Discrete Entropy[B,B type]']),
('Discrete Conditional Entropy', ['B','B type','A','A type'], MultiColumnTransform(discrete_conditional_entropy), ['Discrete Joint Entropy[A,A type,B,B type]', 'Discrete Entropy[A,A type]']),
('Discrete Mutual Information', ['A','A type','B','B type'], MultiColumnTransform(discrete_mutual_information), ['Discrete Joint Entropy[A,A type,B,B type]', 'Discrete Entropy[A,A type]', 'Discrete Entropy[B,B type]']),
('Normalized Discrete Mutual Information', ['Discrete Mutual Information[A,A type,B,B type]','Min[Discrete Entropy[A,A type],Discrete Entropy[B,B type]]'], MultiColumnTransform(operator.div)),
('Normalized Discrete Mutual Information', ['Discrete Mutual Information[A,A type,B,B type]','Discrete Joint Entropy[A,A type,B,B type]'], MultiColumnTransform(operator.div)),
('Adjusted Mutual Information', ['A','A type','B','B type'], MultiColumnTransform(adjusted_mutual_information), ['DisSeq[A,A type]', 'DisSeq[B,B type]']),
('Polyfit', ['A','A type','B','B type'], MultiColumnTransform(fit)),
('Polyfit', ['B','B type','A','A type'], MultiColumnTransform(fit)),
('Sub', ['Polyfit[A,A type,B,B type]','Polyfit[B,B type,A,A type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Polyfit[A,A type,B,B type],Polyfit[B,B type,A,A type]]', SimpleTransform(abs)),
('Polyfit Error', ['A','A type','B','B type'], MultiColumnTransform(fit_error)),
('Polyfit Error', ['B','B type','A','A type'], MultiColumnTransform(fit_error)),
('Sub', ['Polyfit Error[A,A type,B,B type]','Polyfit Error[B,B type,A,A type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Polyfit Error[A,A type,B,B type],Polyfit Error[B,B type,A,A type]]', SimpleTransform(abs)),
('Normalized Error Probability', ['A','A type','B','B type'], MultiColumnTransform(normalized_error_probability), ['DisSeq[A,A type]', 'DisSeq[B,B type]', 'DisProb[A,A type]', 'DisProb[B,B type]']),
('Normalized Error Probability', ['B','B type','A','A type'], MultiColumnTransform(normalized_error_probability), ['DisSeq[B,B type]', 'DisSeq[A,A type]', 'DisProb[B,B type]', 'DisProb[A,A type]']),
('Sub', ['Normalized Error Probability[A,A type,B,B type]','Normalized Error Probability[B,B type,A,A type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Normalized Error Probability[A,A type,B,B type],Normalized Error Probability[B,B type,A,A type]]', SimpleTransform(abs)),
('Conditional Distribution Entropy Variance', ['A','A type','B','B type'], MultiColumnTransform(fit_noise_entropy), ['DisSeq[A,A type]', 'DisSeq[B,B type]', 'DisProb[A,A type]']),
('Conditional Distribution Entropy Variance', ['B','B type','A','A type'], MultiColumnTransform(fit_noise_entropy), ['DisSeq[B,B type]', 'DisSeq[A,A type]', 'DisProb[B,B type]']),
('Sub', ['Conditional Distribution Entropy Variance[A,A type,B,B type]','Conditional Distribution Entropy Variance[B,B type,A,A type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Conditional Distribution Entropy Variance[A,A type,B,B type],Conditional Distribution Entropy Variance[B,B type,A,A type]]', SimpleTransform(abs)),
('Conditional Distribution Skewness Variance', ['A','A type','B','B type'], MultiColumnTransform(fit_noise_skewness), ['DisSeq[A,A type]', 'DisProb[A,A type]']),
('Conditional Distribution Skewness Variance', ['B','B type','A','A type'], MultiColumnTransform(fit_noise_skewness), ['DisSeq[B,B type]', 'DisProb[B,B type]']),
('Sub', ['Conditional Distribution Skewness Variance[A,A type,B,B type]','Conditional Distribution Skewness Variance[B,B type,A,A type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Conditional Distribution Skewness Variance[A,A type,B,B type],Conditional Distribution Skewness Variance[B,B type,A,A type]]', SimpleTransform(abs)),
('Conditional Distribution Kurtosis Variance', ['A','A type','B','B type'], MultiColumnTransform(fit_noise_kurtosis), ['DisSeq[A,A type]', 'DisProb[A,A type]']),
('Conditional Distribution Kurtosis Variance', ['B','B type','A','A type'], MultiColumnTransform(fit_noise_kurtosis), ['DisSeq[B,B type]', 'DisProb[B,B type]']),
('Sub', ['Conditional Distribution Kurtosis Variance[A,A type,B,B type]','Conditional Distribution Kurtosis Variance[B,B type,A,A type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Conditional Distribution Kurtosis Variance[A,A type,B,B type],Conditional Distribution Kurtosis Variance[B,B type,A,A type]]', SimpleTransform(abs)),
('DisSeq2', ['A','A type'], MultiColumnTransform(discrete_seq2)),
('DisSeq2', ['B','B type'], MultiColumnTransform(discrete_seq2)),
('DisProb2', ['A','A type'], MultiColumnTransform(discrete_probability2), ['DisSeq2[A,A type]']),
('DisProb2', ['B','B type'], MultiColumnTransform(discrete_probability2), ['DisSeq2[B,B type]']),
('Conditional Distribution Similarity', ['A','A type','B','B type'], MultiColumnTransform(conditional_distribution_similarity), ['DisSeq2[A,A type]','DisProb2[A,A type]','DisProb2[B,B type]']),
('Conditional Distribution Similarity', ['B','B type','A','A type'], MultiColumnTransform(conditional_distribution_similarity), ['DisSeq2[B,B type]','DisProb2[B,B type]','DisProb2[A,A type]']),
('Sub', ['Conditional Distribution Similarity[A,A type,B,B type]','Conditional Distribution Similarity[B,B type,A,A type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Conditional Distribution Similarity[A,A type,B,B type],Conditional Distribution Similarity[B,B type,A,A type]]', SimpleTransform(abs)),
('Moment21', ['A','A type','B','B type'], MultiColumnTransform(moment21), ['Normalized Value[A,A type]', 'Normalized Value[B,B type]']),
('Moment21', ['B','B type','A','A type'], MultiColumnTransform(moment21), ['Normalized Value[B,B type]', 'Normalized Value[A,A type]']),
('Sub', ['Moment21[A,A type,B,B type]','Moment21[B,B type,A,A type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Moment21[A,A type,B,B type],Moment21[B,B type,A,A type]]', SimpleTransform(abs)),
('Abs', 'Moment21[A,A type,B,B type]', SimpleTransform(abs)),
('Abs', 'Moment21[B,B type,A,A type]', SimpleTransform(abs)),
('Sub', ['Abs[Moment21[A,A type,B,B type]]','Abs[Moment21[B,B type,A,A type]]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Abs[Moment21[A,A type,B,B type]],Abs[Moment21[B,B type,A,A type]]]', SimpleTransform(abs)),
('Moment31', ['A','A type','B','B type'], MultiColumnTransform(moment31), ['Normalized Value[A,A type]', 'Normalized Value[B,B type]']),
('Moment31', ['B','B type','A','A type'], MultiColumnTransform(moment31), ['Normalized Value[B,B type]', 'Normalized Value[A,A type]']),
('Sub', ['Moment31[A,A type,B,B type]','Moment31[B,B type,A,A type]'], MultiColumnTransform(operator.sub)),
('Abs','Sub[Moment31[A,A type,B,B type],Moment31[B,B type,A,A type]]', SimpleTransform(abs)),
('Abs','Moment31[A,A type,B,B type]', SimpleTransform(abs)),
('Abs','Moment31[B,B type,A,A type]', SimpleTransform(abs)),
('Sub', ['Abs[Moment31[A,A type,B,B type]]','Abs[Moment31[B,B type,A,A type]]'], MultiColumnTransform(operator.sub)),
('Abs','Sub[Abs[Moment31[A,A type,B,B type]],Abs[Moment31[B,B type,A,A type]]]', SimpleTransform(abs)),
('Skewness', ['A','A type'], MultiColumnTransform(normalized_skewness), ['Normalized Value[A,A type]']),
('Skewness', ['B','B type'], MultiColumnTransform(normalized_skewness), ['Normalized Value[B,B type]']),
('Sub', ['Skewness[A,A type]','Skewness[B,B type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Skewness[A,A type],Skewness[B,B type]]', SimpleTransform(abs)),
('Abs', 'Skewness[A,A type]', SimpleTransform(abs)),
('Abs', 'Skewness[B,B type]', SimpleTransform(abs)),
('Max', ['Abs[Skewness[A,A type]]','Abs[Skewness[B,B type]]'], MultiColumnTransform(max)),
('Min', ['Abs[Skewness[A,A type]]','Abs[Skewness[B,B type]]'], MultiColumnTransform(min)),
('Sub', ['Abs[Skewness[A,A type]]','Abs[Skewness[B,B type]]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Abs[Skewness[A,A type]],Abs[Skewness[B,B type]]]', SimpleTransform(abs)),
('Kurtosis', ['A','A type'], MultiColumnTransform(normalized_kurtosis), ['Normalized Value[A,A type]']),
('Kurtosis', ['B','B type'], MultiColumnTransform(normalized_kurtosis), ['Normalized Value[B,B type]']),
('Max', ['Kurtosis[A,A type]','Kurtosis[B,B type]'], MultiColumnTransform(max)),
('Min', ['Kurtosis[A,A type]','Kurtosis[B,B type]'], MultiColumnTransform(min)),
('Sub', ['Kurtosis[A,A type]','Kurtosis[B,B type]'], MultiColumnTransform(operator.sub)),
('Abs', 'Sub[Kurtosis[A,A type],Kurtosis[B,B type]]', SimpleTransform(abs)),
('Pearson R', ['A','A type','B','B type'], MultiColumnTransform(correlation), ['Normalized Error Probability[A,A type,B,B type]','Normalized Error Probability[B,B type,A,A type]']),
('HSIC', ['A','A type','B','B type'], MultiColumnTransform(normalized_hsic), ['Pearson R[A,A type,B,B type]']),
('Abs', 'Pearson R[A,A type,B,B type]', SimpleTransform(abs))
]
all_features = [fea if len(fea) > 3 else (fea[0], fea[1], fea[2], []) for fea in all_features]
used_feature_names = set(selected_direction_categorical_features + selected_direction_cn_features + selected_direction_numerical_features
+selected_independence_categorical_features + selected_independence_cn_features + selected_independence_numerical_features
+selected_symmetric_categorical_features + selected_symmetric_cn_features + selected_symmetric_numerical_features
+selected_onestep_categorical_features + selected_onestep_cn_features + selected_onestep_numerical_features)
used_feature_names_add = used_feature_names
all_features_clean = []
for feature_prefix, column_names, extractor, aux_column_names in reversed(all_features):
if not type(column_names) is list:
column_names = [column_names]
feature_name = feature_prefix + '[' + ','.join(column_names) + ']'
if len([x for x in used_feature_names_add if feature_name in x]) > 0:
used_feature_names_add = set(list(used_feature_names_add) + column_names + aux_column_names)
for feature_prefix, column_names, extractor, aux_column_names in all_features:
if type(column_names) is list:
feature_name = feature_prefix + '[' + ','.join(column_names) + ']'
else:
feature_name = feature_prefix + '[' + column_names + ']'
if len([x for x in used_feature_names_add if feature_name in x]) > 0:
all_features_clean.append((feature_prefix, column_names, extractor, aux_column_names))
return all_features_clean, used_feature_names
def extract_features(X, features=None, y=None):
if features is None:
features, _ = get_all_features()
X = X.copy()
X['A type'] = pd.Series.apply(X['A type'], lambda x: 0 if x == BINARY else 1 if x == CATEGORICAL else 2 if x == NUMERICAL else np.nan)
X['B type'] = pd.Series.apply(X['B type'], lambda x: 0 if x == BINARY else 1 if x == CATEGORICAL else 2 if x == NUMERICAL else np.nan)
for feature_name, column_names, extractor, aux_column_names in features:
if not type(column_names) is list:
column_names = [column_names]
feature_name = feature_name + '[' + ','.join(column_names) + ']'
if (feature_name[0] == '+') or (feature_name not in X.columns):
if feature_name[0] == '+':
feature_name = feature_name[1:]
column_names = column_names + aux_column_names
if len(column_names) > 1:
tmp = extractor.fit_transform(X[column_names], y)
else:
tmp = extractor.fit_transform(X[column_names[0]], y)
X[feature_name] = tmp
return X
def get_sym_col(col):
col = col.replace('A type', '<>').replace('B type', 'A type').replace('<>', 'B type')
col = col.replace('[A', '<>').replace('[B', '[A').replace('<>', '[B')
col = col.replace(',A,', '<>').replace(',B,', ',A,').replace('<>', ',B,')
return col
def extract_features2(X, X_inv, features=None, y=None): #, used_feature_names=used_feature_names):
symmetric_feature_names = ['HSIC[A,A type,B,B type]', 'Pearson R[A,A type,B,B type]', 'Discrete Joint Entropy[A,A type,B,B type]', 'Adjusted Mutual Information[A,A type,B,B type]']
if features is None:
features, _ = get_all_features()
X = X.copy()
X['A type'] = pd.Series.apply(X['A type'], lambda x: 0 if x == BINARY else 1 if x == CATEGORICAL else 2 if x == NUMERICAL else np.nan)
X['B type'] = pd.Series.apply(X['B type'], lambda x: 0 if x == BINARY else 1 if x == CATEGORICAL else 2 if x == NUMERICAL else np.nan)
for feature_name, column_names, extractor, aux_column_names in features:
if not type(column_names) is list:
column_names = [column_names]
feature_name = feature_name + '[' + ','.join(column_names) + ']'
if feature_name in symmetric_feature_names:
X[feature_name] = X_inv[feature_name]
continue
if get_sym_col(feature_name) in X_inv.columns:
X[feature_name] = X_inv[get_sym_col(feature_name)]
continue
if (feature_name[0] == '+') or (feature_name not in X.columns):
if feature_name[0] == '+':
feature_name = feature_name[1:]
column_names = column_names + aux_column_names
if len(column_names) > 1:
tmp = extractor.fit_transform(X[column_names], y)
else:
tmp = extractor.fit_transform(X[column_names[0]], y)
X[feature_name] = tmp
return X