-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathodv_helpers.py
executable file
·600 lines (471 loc) · 21.1 KB
/
odv_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#!/pkg/python/3.7.4/bin/python3
import sys
import math
import heapq
from collections import defaultdict, namedtuple
from statistics import mean
from bash_helpers import *
from graph_helpers import *
from file_helpers import *
from general_helpers import *
# WEIRD ORCA BEHAVIOR
# it seems to output all the nodes with nothing and then all the nodes with the right ODV values?
CACHED_CUM_ORBIT_COUNTS = dict()
CACHED_CUM_ORBIT_COUNTS[6] = [1, 2, 2, 2, 3, 4, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 6, 5, 4, 5, 6, 6, 4, 4, 5, 5, 8, 4, 6, 6, 7, 5, 6, 6, 6, 5, 6, 7, 7, 5, 7, 7, 7, 6, 5, 5, 6, 8, 8, 6, 6, 8, 6, 9, 6, 6, 4, 6, 6, 8, 9, 6, 6, 8, 8, 6, 7, 7, 8, 5, 6, 6, 4, 5, 5, 7, 5, 8, 8, 7, 8, 8, 7, 9, 7, 5, 8, 8, 9, 9, 7, 8, 12, 12, 8, 10, 8, 10, 8, 10, 10, 10, 7, 9, 11, 8, 9, 13, 7, 10, 9, 10, 7, 10, 10, 10, 8, 8, 8, 8, 7, 8, 10, 9, 9, 8, 12, 12, 7, 9, 9, 6, 6, 10, 8, 8, 6, 10, 10, 11, 6, 10, 8, 6, 10, 5, 8, 8, 8, 11, 12, 7, 6, 8, 11, 10, 12, 9, 8, 11, 11, 14, 14, 7, 11, 10, 10, 10, 11, 13, 12, 14, 15, 7, 13, 14, 10, 7, 10, 12, 7, 8, 12, 5, 8, 8, 10, 8, 7, 8, 10, 11, 12, 9, 13, 10, 14, 14, 14, 10, 13, 12, 14, 13, 16, 9, 11, 14, 12, 14, 8, 11, 12, 12, 12, 11, 6, 10, 8, 10, 11, 6, 10, 10, 12, 11, 10, 8, 12, 11, 10, 10, 10, 10, 7, 11, 11, 10, 7, 12, 12, 11, 11, 12, 11, 13, 15, 14, 11, 14, 13, 14, 14, 13, 14, 14, 11, 10, 12, 12, 10, 11, 11, 7, 12, 13, 12, 9, 10, 11, 15, 15, 6, 13, 9, 6, 8, 11, 12, 10, 9, 12, 13, 14, 13, 16, 8, 10, 10, 14, 14, 7, 13, 12, 11, 9, 15, 12, 11, 15, 7, 11, 11, 11, 9, 9, 12, 9, 14, 12, 11, 16, 12, 13, 11, 13, 14, 16, 13, 14, 16, 14, 13, 16, 10, 11, 13, 14, 13, 15, 12, 14, 14, 16, 17, 15, 17, 14, 11, 16, 11, 10, 12, 10, 14, 10, 14, 13, 16, 13, 13, 15, 13, 16, 15, 15, 11, 10, 14, 11, 14, 10, 12, 12, 12, 9, 12, 9, 12, 12, 12, 8, 9, 9, 5, 9, 10, 8, 7, 11, 13, 12, 7, 9, 12, 12, 5, 8, 8, 8, 10, 10, 8, 12, 11, 8, 9, 8, 9, 16, 13, 16, 15, 11, 12, 13, 11, 16, 15, 14, 14, 12, 10, 14, 12, 14, 15, 14, 11, 10, 15, 11, 15, 13, 17, 11, 17, 12, 16, 12, 12, 16, 15, 15, 12, 13, 15, 15, 11, 8, 12, 12, 8, 10, 10, 12, 10, 11, 9, 14, 7, 14, 17, 17, 16, 12, 17, 17, 10, 15, 14, 12, 13, 14, 10, 12, 15, 12, 14, 14, 10, 9, 10, 10, 10, 12, 8, 8, 8, 5]
CACHED_CUM_ORBIT_COUNTS[5] = [1, 2, 2, 2, 3, 4, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 6, 5, 4, 5, 6, 6, 4, 4, 5, 5, 8, 4, 6, 6, 7, 5, 6, 6, 6, 5, 6, 7, 7, 5, 7, 7, 7, 6, 5, 5, 6, 8, 8, 6, 6, 8, 6, 9, 6, 6, 4, 6, 6, 8, 9, 6, 6, 8, 8, 6, 7, 7, 8, 5, 6, 6, 4]
CACHED_CUM_ORBIT_COUNTS[4] = [1, 2, 2, 2, 3, 4, 3, 3, 4, 3, 4, 4, 4, 4, 3]
def get_odv_path(gtag, k):
return get_data_path(f'odv/{gtag}-k{k}.odv')
def get_blantspl_path_nstr(gtag, k, nstr):
return get_data_path(f'odv/{gtag}-k{k}-n{nstr}.splodv')
def get_blantspl_path(gtag, k, n):
return get_data_path(f'odv/{gtag}-k{k}-n{get_abbr_num_str(n)}.splodv')
def get_cbodv_path(gtag, k, nstr):
return get_data_path(f'odv/{gtag}-k{k}-n{nstr}.cbodv')
def gtag_to_k(gtag, override_k=None):
from graph_helpers import is_syeast
if override_k != None:
return override_k
if is_syeast(gtag):
return 5
else:
return 4
def get_gtag_to_n_cache_path():
return get_data_path('caches/gtag_to_n_cache.txt')
def read_gtag_to_n_cache():
g2n_cache = dict()
with open(get_gtag_to_n_cache_path(), 'r') as f:
for line in f:
gtag, n = line.strip().split()
n = int(n)
g2n_cache[gtag] = n
return g2n_cache
def write_gtag_to_n_cache(cache):
cache_str = '\n'.join([f'{gtag} {n}' for gtag, n in cache.items()])
write_to_file(cache_str, get_gtag_to_n_cache_path())
def gtag_to_n(gtag):
from graph_helpers import read_in_nodes, get_graph_path
g2n_cache = read_gtag_to_n_cache()
if gtag in g2n_cache:
return g2n_cache[gtag]
else:
nodes = read_in_nodes(get_graph_path(gtag))
g2n_cache[gtag] = len(nodes)
write_gtag_to_n_cache(g2n_cache)
return len(nodes)
def two_gtags_to_k(gtag1, gtag2, override_k=None):
assert gtag_to_k(gtag1, override_k=override_k) == gtag_to_k(gtag2, override_k=override_k)
k = gtag_to_k(gtag1, override_k=override_k)
return k
def two_gtags_to_n(gtag1, gtag2):
return min(gtag_to_n(gtag1), gtag_to_n(gtag2))
def get_num_graphlets(k):
if k == 8:
return 11117
elif k == 7:
return 853
elif k == 6:
return 112
elif k == 5:
return 21
elif k == 4:
return 6
elif k == 3:
return 2
elif k == 2:
return 1
else:
return None
def get_num_graphlets_cum(k):
if k < 2:
return None
elif k == 2:
return get_num_graphlets(k)
else:
return get_num_graphlets(k) + get_num_graphlets_cum(k - 1)
def get_num_orbits(k):
if k == 8:
return 72489
elif k == 7:
return 4306
elif k == 6:
return 407
elif k == 5:
return 58
elif k == 4:
return 11
elif k == 3:
return 3
elif k == 2:
return 1
else:
return None
def get_num_orbits_cum(k):
if k < 2:
return None
elif k == 2:
return get_num_orbits(k)
else:
return get_num_orbits(k) + get_num_orbits_cum(k - 1)
def calc_orbit_counts_autogen_graphlets(k):
assert k in [6] # the orca method only works for k=6
canon_list, orbit_map = read_in_canon_list_and_orbit_map(k)
justk_orbit_counts = [None] * get_num_orbits(k)
bvs = get_connected_bvs(canon_list)
assert len(bvs) == get_num_graphlets(k)
for bv in bvs:
blantitl_el = get_bv_el_with_blantitl_orbit_nodes(bv, canon_list, orbit_map)
blantitl_graph_path = get_tmp_path(f'graphlet_k{k}_bv{bv}.el')
write_el_to_file(blantitl_el, blantitl_graph_path)
p = run_orca_raw(5, blantitl_graph_path) # just run orca until 5, and run BLANT sample from 6 and up
os.remove(blantitl_graph_path)
orbit_lines = p.stdout.decode().strip().split('\n')[1:]
for line in orbit_lines:
splitted = line.split()
node_name = splitted[0]
blantitl_orbit_num = int(node_name[:-1])
blantout_orbit_num = BLANTITL_TO_BLANTOUT_MAPPING[k][blantitl_orbit_num]
orbits = splitted[1:]
orbit_count = sum([1 if n != '0' else 0 for n in orbits])
orbit_count += 1 # to include the orbit itself, since we'll only run blant or orca or whatever on k - 1
if justk_orbit_counts[blantout_orbit_num] == None:
justk_orbit_counts[blantout_orbit_num] = orbit_count
else:
assert justk_orbit_counts[blantout_orbit_num] == orbit_count
# append justk to k5 one
return CACHED_CUM_ORBIT_COUNTS[k - 1] + justk_orbit_counts
# directly use the graphlets directory which has the correct orbits
def calc_orbit_counts_direct(k):
assert k in [4, 5]
orbit_counts = [None] * get_num_orbits_cum(k)
for graphlet_num in range(get_num_graphlets_cum(k)):
p = run_orca_raw(k, get_base_graph_path(f'graphlets/graphlet{graphlet_num}'))
orbit_lines = p.stdout.decode().strip().split('\n')[1:]
for line in orbit_lines:
splitted = line.split()
node_name = splitted[0]
orbit_num = int(node_name[:-1])
orbits = splitted[1:]
# we can't just sum all the orbits, we need to count how many are not zero (because if a node has a degree of 5 we only count that once for "an appearance of orbit 0)
# we include the orbits effect on itself too
orbit_count = sum([1 if n != '0' else 0 for n in orbits])
if orbit_counts[orbit_num] == None:
orbit_counts[orbit_num] = orbit_count
else:
assert orbit_counts[orbit_num] == orbit_count
return orbit_counts
def calc_orbit_counts(k):
USE_CACHE = True
if USE_CACHE:
if k in CACHED_CUM_ORBIT_COUNTS:
return CACHED_CUM_ORBIT_COUNTS[k]
else:
return None
else:
if k in [6]:
return calc_orbit_counts_autogen_graphlets(k)
if k in [4, 5]:
return calc_orbit_counts_direct(k)
else:
return None
def calc_weights(k):
orbit_counts = calc_orbit_counts(k)
weights = [1 - math.log(orbit_count) / math.log(get_num_orbits_cum(k)) for orbit_count in orbit_counts]
return weights
def get_combined_odv_file(gtag, k, nstr, overwrite=True):
cbodv_path = get_cbodv_path(gtag, k, nstr)
if overwrite or not file_exists(cbodv_path):
base_k = min(5, k - 1)
assert base_k >= 4
base_odv_dir = ODVDirectory(get_odv_path(gtag, base_k))
assert k == base_k + 1 # since we hardcoded to read one splodv file for now
spl_odv_dir = ODVDirectory(get_blantspl_path_nstr(gtag, k, nstr))
assert base_odv_dir.get_nodes() == spl_odv_dir.get_nodes(), f'nodes not equal. base_odv_dir has {len(base_odv_dir.get_nodes())} nodes while spl_odv_dir has {len(spl_odv_dir.get_nodes())} nodes'
out_odv = dict()
for node in base_odv_dir.get_nodes():
base_odv_list = base_odv_dir.get_odv(node).get_odv_list()
spl_odv_list = spl_odv_dir.get_odv(node).get_odv_list()
odv_list = base_odv_list + spl_odv_list
assert len(odv_list) == get_num_orbits_cum(k)
out_odv[node] = odv_list
out_str = '\n'.join([f'{node} {" ".join(map(str, odv_list))}' for node, odv_list in out_odv.items()])
write_to_file(out_str, cbodv_path)
return ODVDirectory(cbodv_path)
class ODVDirectory:
# file format: every line has node name, followed by orbit counts, separated by spaces
# NODENAME 23 1 250 37 4 0 ...
def __init__(self, fname):
self._directory = dict()
for line in open(fname, 'r'):
line_split = line.strip().split()
if len(line_split) == 1:
continue # this is the initial first line of the .odv file that contains k
node = line_split[0]
odv_list = [int(s) for s in line_split[1:]]
odv = ODV(node, odv_list)
self._directory[node] = odv
def get_odv(self, node):
if node in self._directory:
return self._directory[node]
else:
return None
def get_nodes(self):
return set(self._directory.keys())
def __str__(self):
return '\n'.join([f'{node}: {odv}' for node, odv in self._directory.items()])
class ODV:
WEIGHTS = []
WEIGHT_SUM = 0
@staticmethod
def set_weights_vars(k):
ODV.WEIGHTS = calc_weights(k)
ODV.WEIGHT_SUM = sum(ODV.WEIGHTS) # 45.08670802954777 <- calculated value from .sim file
def __init__(self, node, odv_list):
self._node = node
self._odv_list = odv_list
def get_similarity(self, other):
if len(self._odv_list) == 0 or len(other._odv_list) == 0: # handle the case where the node is not connected to anything in one or both files, causing it to appear with no numbers after it in the .odv file
return 0
assert len(self._odv_list) == len(other._odv_list) == len(ODV.WEIGHTS), f'self: {len(self._odv_list)}, other: {len(other._odv_list)}, weights: {len(ODV.WEIGHTS)}, self._node: {self._node}, other._node: {other._node}'
distance_sum = sum([self._get_single_orbit_similarity(m1, m2, i) for i, (m1, m2) in enumerate(zip(self._odv_list, other._odv_list))])
weight_sum = ODV.WEIGHT_SUM
return 1 - distance_sum / weight_sum
def get_inequal_orbits(self, other):
assert len(self._odv_list) == len(other._odv_list) == len(ODV.WEIGHTS), f'self: {len(self._odv_list)}, other: {len(other._odv_list)}, weights: {len(ODV.WEIGHTS)}'
inequal_orbits = []
for i, (o1, o2) in enumerate(zip(self._odv_list, other._odv_list)):
if o1 != o2:
inequal_orbits.append(i)
return inequal_orbits
def get_mean_similarity(self, other):
return mean([self._get_single_orbit_mean_similarity(m1, m2) for m1, m2 in zip(self._odv_list, other._odv_list)])
def get_odv_val(self, num):
return self._odv_list[num]
def get_odv_list(self):
return self._odv_list
def __str__(self):
return ' '.join([str(n) for n in self._odv_list])
@staticmethod
def _get_single_orbit_mean_similarity(m1, m2):
return 1 if m1 == m2 == 0 else min(m1, m2) / max(m1, m2)
@staticmethod
def _get_single_orbit_similarity(m1, m2, i):
# the base of the log doesn't matter
top_inner = math.log(m1 + 1) - math.log(m2 + 1)
bot = math.log(max(m1, m2) + 2)
return ODV.WEIGHTS[i] * abs(top_inner) / bot
def read_in_nodes_wo_deg1(gtag):
graph_path = get_graph_path(gtag)
nodes = read_in_nodes(graph_path)
adj_set = read_in_adj_set(graph_path)
new_nodes = [node for node in nodes if len(adj_set[node]) > 1]
return new_nodes
def get_deg_sim(node1, node2, adj_set1, adj_set2, max_deg1, max_deg2):
deg1 = len(adj_set1[node1])
deg2 = len(adj_set2[node2])
return (deg1 + deg2) / (max_deg1 + max_deg2)
# n is the number of orthologs to generate
# bn stands for "BLANT n" and is the number of samples
# if using bn, we're assuming that we're using a combined odv file over a normal odv file
def get_odv_orthologs(gtag1, gtag2, k, n, bnstr=None, no1=False, alpha=1):
graph_path1 = get_graph_path(gtag1)
graph_path2 = get_graph_path(gtag2)
if no1:
nodes1 = read_in_nodes_wo_deg1(gtag1)
nodes2 = read_in_nodes_wo_deg1(gtag2)
else:
nodes1 = list(read_in_nodes(graph_path1))
nodes2 = list(read_in_nodes(graph_path2))
if bnstr == None:
odv_path1 = get_odv_path(gtag1, k)
odv_path2 = get_odv_path(gtag2, k)
else:
odv_path1 = get_cbodv_path(gtag1, k, bnstr)
odv_path2 = get_cbodv_path(gtag2, k, bnstr)
odv_dir1 = ODVDirectory(odv_path1)
odv_dir2 = ODVDirectory(odv_path2)
adj_set1 = read_in_adj_set(graph_path1)
adj_set2 = read_in_adj_set(graph_path2)
max_deg1 = get_max_deg(adj_set1)
max_deg2 = get_max_deg(adj_set2)
# assert n < len(nodes1) * len(nodes2), f'{n} must be >= {len(nodes1)} * {len(nodes2)}'
top_n = [(-1, '', '')] * n
heapq.heapify(top_n)
tot_nodes = len(nodes1) # approximation for less incrementing
proc_nodes = 0
percent_printed = 0
skip = 1
# assert alpha == 1.0 # since we're commenting out deg_sim
for node1 in nodes1:
for i in range(0, len(nodes2), skip):
node2 = nodes2[i]
odv1 = odv_dir1.get_odv(node1)
odv2 = odv_dir2.get_odv(node2)
if odv1 == None or odv2 == None:
continue
odv_sim = odv1.get_similarity(odv2)
deg_sim = get_deg_sim(node1, node2, adj_set1, adj_set2, max_deg1, max_deg2) # the reason we pass in max is so that we don't have to recalculate it every time we call this
sim = alpha * odv_sim + (1 - alpha) * deg_sim
# don't do min/max node just for sorting purposes, because the nodes come from two different graphs
# min_node = min(node1, node2) BAD
# max_node = max(node1, node2) BAD
obj = (sim, node1, node2)
min_top = heapq.heappushpop(top_n, obj)
proc_nodes += 1
if proc_nodes * 10000 / tot_nodes > percent_printed:
percent_printed += 1
print(f'{proc_nodes} / {tot_nodes}', file=sys.stderr)
return sorted(top_n, reverse=True)
def analyze_mcl_test_data():
nif1_path = get_data_path('mcl/mcl_test/ppi1.nif')
nif2_path = get_data_path('mcl/mcl_test/ppi2.nif')
ort_path = get_data_path('mcl/mcl_test/ppi1-ppi2.ort')
ppi1_nodes = set()
ppi2_nodes = set()
with open(nif1_path, 'r') as nif1:
for line in nif1:
node1, node2, _ = line.strip().split('\t')
ppi1_nodes.add(node1)
ppi1_nodes.add(node2)
with open(nif2_path, 'r') as nif2:
for line in nif2:
node1, node2, _ = line.strip().split('\t')
ppi2_nodes.add(node1)
ppi2_nodes.add(node2)
ort_ppi1_nodes = set()
ort_ppi2_nodes = set()
with open(ort_path, 'r') as ort:
for line in ort:
print(line)
node1, node2, _ = line.strip().split('\t')
ort_ppi1_nodes.add(node1)
ort_ppi2_nodes.add(node2)
print(len(ppi1_nodes), len(ort_ppi1_nodes))
print(len(ppi2_nodes), len(ort_ppi2_nodes))
all_nodes = ppi1_nodes.union(ppi2_nodes)
all_ort_nodes = ort_ppi1_nodes.union(ort_ppi2_nodes)
print(len(all_nodes), len(all_ort_nodes))
def get_fake_ort_path(base, ext):
return get_data_path(f'mcl/fake_ort/{base}.{ext}')
def get_odv_ort_path(gtag1, gtag2, k, n, bnstr=None, notes=''):
base = f'{gtag1}-{gtag2}-k{k}-n{n}'
if bnstr != None:
base += f'-bn{bnstr}'
if notes != '':
base += f'-{notes}'
return get_fake_ort_path(base, 'ort')
def get_default_odv_ort_path(gtag1, gtag2, notes=''):
k = two_gtags_to_k(gtag1, gtag2)
n = two_gtags_to_n(gtag1, gtag2)
return get_odv_ort_path(gtag1, gtag2, k, n, notes=notes)
def read_in_odv_orts(path, include_score=True):
from graph_helpers import unmark_node
with open(path, 'r') as f:
lines = f.readlines()
splitted_strs = [line.strip().split('\t') for line in lines]
if include_score:
return [(unmark_node(node1), unmark_node(node2), float(score)) for node1, node2, score in splitted_strs]
else:
return [(unmark_node(node1), unmark_node(node2)) for node1, node2, _ in splitted_strs]
def odv_ort_file_to_nodes(path, left):
from graph_helpers import unmark_node
with open(path, 'r') as f:
nodes = []
for line in f:
marked_node1, marked_node2, score = line.strip().split('\t')
node1 = unmark_node(marked_node1)
node2 = unmark_node(marked_node2)
if left:
nodes.append(node1)
else:
nodes.append(node2)
return nodes
def odv_ort_to_nodes(odv_orts, left):
nodes = list()
for score, node1, node2 in odv_orts:
if left:
nodes.append(node1)
else:
nodes.append(node2)
return nodes
def gen_fake_ort_from_sim(base, k, n):
sim_path = get_fake_ort_path(base, 'sim')
ort_path = get_fake_ort_path(f'{base}-{k}', 'ort')
added_nodes = set()
with open(sim_path, 'r') as sim_f:
with open(ort_path, 'w') as ort_f:
i = 0
for line in sim_f:
node1, node2, score = line.split()
marked_node2 = f'sy05_{node2}'
if i < n:
added_nodes.add(node1)
added_nodes.add(node2)
ort_f.write('\t'.join([node1, marked_node2, score]) + '\n')
i += 1
else:
break
# function I used to validate the sim function based on Hayes' sim files
def validate_sim_function(gtag1, gtag2):
FACTOR = 1_000_000
odv_path1 = get_odv_path(gtag1, 5)
odv_path2 = get_odv_path(gtag2, 5)
odv_dir1 = ODVDirectory(odv_path1)
odv_dir2 = ODVDirectory(odv_path2)
sim_path = get_fake_ort_path(f'{gtag1}-{gtag2}', 'sim')
tot_diff = 0
tot_pairs = 0
num_gt10 = 0
with open(sim_path, 'r') as sim_file:
for line in sim_file:
node1, node2, sim = line.strip().split()
sim = float(sim)
sim_non_decimal = int(sim * FACTOR) # cuz the sim_path values are rounded to six
odv1 = odv_dir1.get_odv(node1)
odv2 = odv_dir2.get_odv(node2)
my_sim = odv1.get_similarity(odv2)
my_sim_non_decimal = int(my_sim * FACTOR)
tot_diff += abs(sim_non_decimal - my_sim_non_decimal)
tot_pairs += 1
if tot_pairs % 5000 == 0:
print(tot_pairs, '/', 1004 ** 2)
if tot_pairs > 10000:
break
avg_diff = (tot_diff / tot_pairs) / FACTOR
print(f'avg_diff: {avg_diff}')
print(f'num_gt10: {num_gt10}')
def odv_ort_to_str(odv_ort, mark1, mark2):
return '\n'.join([f'{mark1}_{node1}\t{mark2}_{node2}\t{score}' for score, node1, node2 in odv_ort])
def make_odv_ort_1to1(odv_ort):
odv_ort_1to1 = []
used_nodes1 = set()
used_nodes2 = set()
for node1, node2 in odv_ort:
if node1 in used_nodes1 or node2 in used_nodes2:
continue
odv_ort_1to1.append((node1, node2))
used_nodes1.add(node1)
used_nodes2.add(node2)
return odv_ort_1to1
def get_odv_alignment(odv_ort, adj_set1, adj_set2):
from analysis_helpers import get_s3
alignment = []
step_size = len(odv_ort) // 10
n = step_size
while n <= len(odv_ort):
alignment = odv_ort[:n]
s3 = get_s3(alignment, adj_set1, adj_set2)
if s3 < 0.8:
break
n += step_size
return alignment
if __name__ == '__main__':
from graph_helpers import get_graph_path, read_in_adj_set
from analysis_helpers import get_deg_distr, print_deg_distr
gtag1 = sys.argv[1]
gtag2 = sys.argv[2]
k = two_gtags_to_k(gtag1, gtag2)
ODV.set_weights_vars(k)
n = two_gtags_to_n(gtag1, gtag2)
odv_ort = get_odv_orthologs(gtag1, gtag2, k, n)
print(odv_ort_to_str(odv_ort, '', ''))