Skip to content

Commit

Permalink
Merge branch 'devel' into ptmodel-ut-structure
Browse files Browse the repository at this point in the history
  • Loading branch information
Han Wang committed Feb 6, 2024
2 parents cf5f5f9 + 13a781f commit f78f6d1
Show file tree
Hide file tree
Showing 17 changed files with 1,125 additions and 892 deletions.
7 changes: 4 additions & 3 deletions deepmd/pt/model/model/ener.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ def forward(
model_predict["atom_virial"] = model_ret["energy_derv_c"].squeeze(
-3
)
model_predict["virial"] = model_ret["energy_derv_c_redu"].squeeze(-3)
model_predict["virial"] = model_ret["energy_derv_c_redu"].squeeze(-2)
else:
model_predict["force"] = model_ret["dforce"]
else:
Expand All @@ -64,7 +64,7 @@ def forward_lower(
mapping: Optional[torch.Tensor] = None,
do_atomic_virial: bool = False,
):
model_ret = self.common_forward_lower(
model_ret = self.forward_common_lower(
extended_coord,
extended_atype,
nlist,
Expand All @@ -77,10 +77,11 @@ def forward_lower(
model_predict["energy"] = model_ret["energy_redu"]
if self.do_grad("energy"):
model_predict["extended_force"] = model_ret["energy_derv_r"].squeeze(-2)
model_predict["virial"] = model_ret["energy_derv_c_redu"].squeeze(-2)
if do_atomic_virial:
model_predict["extended_virial"] = model_ret[
"energy_derv_c"
].squeeze(-3)
].squeeze(-2)
else:
assert model_ret["dforce"] is not None
model_predict["dforce"] = model_ret["dforce"]
Expand Down
1 change: 1 addition & 0 deletions source/tests/common/dpmodel/README
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
test deepmd-kit/source/deepmd/dpmodel
File renamed without changes.
32 changes: 32 additions & 0 deletions source/tests/common/dpmodel/case_single_frame_with_nlist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import numpy as np


class TestCaseSingleFrameWithNlist:
def setUp(self):
# nloc == 3, nall == 4
self.nloc = 3
self.nall = 4
self.nf, self.nt = 1, 2
self.coord_ext = np.array(
[
[0, 0, 0],
[0, 1, 0],
[0, 0, 1],
[0, -2, 0],
],
dtype=np.float64,
).reshape([1, self.nall * 3])
self.atype_ext = np.array([0, 0, 1, 0], dtype=int).reshape([1, self.nall])
# sel = [5, 2]
self.sel = [5, 2]
self.nlist = np.array(
[
[1, 3, -1, -1, -1, 2, -1],
[0, -1, -1, -1, -1, 2, -1],
[0, 1, -1, -1, -1, -1, -1],
],
dtype=int,
).reshape([1, self.nloc, sum(self.sel)])
self.rcut = 0.4
self.rcut_smth = 2.2
35 changes: 35 additions & 0 deletions source/tests/common/dpmodel/test_descriptor_se_e2_a.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import unittest

import numpy as np

from deepmd.dpmodel.descriptor import (
DescrptSeA,
)

from .case_single_frame_with_nlist import (
TestCaseSingleFrameWithNlist,
)


class TestDescrptSeA(unittest.TestCase, TestCaseSingleFrameWithNlist):
def setUp(self):
TestCaseSingleFrameWithNlist.setUp(self)

def test_self_consistency(
self,
):
rng = np.random.default_rng()
nf, nloc, nnei = self.nlist.shape
davg = rng.normal(size=(self.nt, nnei, 4))
dstd = rng.normal(size=(self.nt, nnei, 4))
dstd = 0.1 + np.abs(dstd)

em0 = DescrptSeA(self.rcut, self.rcut_smth, self.sel)
em0.davg = davg
em0.dstd = dstd
em1 = DescrptSeA.deserialize(em0.serialize())
mm0 = em0.call(self.coord_ext, self.atype_ext, self.nlist)
mm1 = em1.call(self.coord_ext, self.atype_ext, self.nlist)
for ii in [0, 1, 4]:
np.testing.assert_allclose(mm0[ii], mm1[ii])
47 changes: 47 additions & 0 deletions source/tests/common/dpmodel/test_dp_atomic_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import unittest

import numpy as np

from deepmd.dpmodel.descriptor import (
DescrptSeA,
)
from deepmd.dpmodel.fitting import (
InvarFitting,
)
from deepmd.dpmodel.model import (
DPAtomicModel,
)

from .case_single_frame_with_nlist import (
TestCaseSingleFrameWithNlist,
)


class TestDPAtomicModel(unittest.TestCase, TestCaseSingleFrameWithNlist):
def setUp(self):
TestCaseSingleFrameWithNlist.setUp(self)

def test_self_consistency(
self,
):
ds = DescrptSeA(
self.rcut,
self.rcut_smth,
self.sel,
)
ft = InvarFitting(
"energy",
self.nt,
ds.get_dim_out(),
1,
distinguish_types=ds.distinguish_types(),
)
type_map = ["foo", "bar"]
md0 = DPAtomicModel(ds, ft, type_map=type_map)
md1 = DPAtomicModel.deserialize(md0.serialize())

ret0 = md0.forward_atomic(self.coord_ext, self.atype_ext, self.nlist)
ret1 = md1.forward_atomic(self.coord_ext, self.atype_ext, self.nlist)

np.testing.assert_allclose(ret0["energy"], ret1["energy"])
49 changes: 49 additions & 0 deletions source/tests/common/dpmodel/test_dp_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import unittest

import numpy as np

from deepmd.dpmodel.descriptor import (
DescrptSeA,
)
from deepmd.dpmodel.fitting import (
InvarFitting,
)
from deepmd.dpmodel.model import (
DPModel,
)

from .case_single_frame_with_nlist import (
TestCaseSingleFrameWithNlist,
)


class TestDPModel(unittest.TestCase, TestCaseSingleFrameWithNlist):
def setUp(self):
TestCaseSingleFrameWithNlist.setUp(self)

def test_self_consistency(
self,
):
nf, nloc, nnei = self.nlist.shape
ds = DescrptSeA(
self.rcut,
self.rcut_smth,
self.sel,
)
ft = InvarFitting(
"energy",
self.nt,
ds.get_dim_out(),
1,
distinguish_types=ds.distinguish_types(),
)
type_map = ["foo", "bar"]
md0 = DPModel(ds, ft, type_map=type_map)
md1 = DPModel.deserialize(md0.serialize())

ret0 = md0.call_lower(self.coord_ext, self.atype_ext, self.nlist)
ret1 = md1.call_lower(self.coord_ext, self.atype_ext, self.nlist)

np.testing.assert_allclose(ret0["energy"], ret1["energy"])
np.testing.assert_allclose(ret0["energy_redu"], ret1["energy_redu"])
32 changes: 32 additions & 0 deletions source/tests/common/dpmodel/test_env_mat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import unittest

import numpy as np

from deepmd.dpmodel.utils import (
EnvMat,
)

from .case_single_frame_with_nlist import (
TestCaseSingleFrameWithNlist,
)


class TestEnvMat(unittest.TestCase, TestCaseSingleFrameWithNlist):
def setUp(self):
TestCaseSingleFrameWithNlist.setUp(self)

def test_self_consistency(
self,
):
rng = np.random.default_rng()
nf, nloc, nnei = self.nlist.shape
davg = rng.normal(size=(self.nt, nnei, 4))
dstd = rng.normal(size=(self.nt, nnei, 4))
dstd = 0.1 + np.abs(dstd)
em0 = EnvMat(self.rcut, self.rcut_smth)
em1 = EnvMat.deserialize(em0.serialize())
mm0, ww0 = em0.call(self.coord_ext, self.atype_ext, self.nlist, davg, dstd)
mm1, ww1 = em1.call(self.coord_ext, self.atype_ext, self.nlist, davg, dstd)
np.testing.assert_allclose(mm0, mm1)
np.testing.assert_allclose(ww0, ww1)
136 changes: 136 additions & 0 deletions source/tests/common/dpmodel/test_fitting_invar_fitting.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import itertools
import unittest

import numpy as np

from deepmd.dpmodel.descriptor import (
DescrptSeA,
)
from deepmd.dpmodel.fitting import (
InvarFitting,
)

from .case_single_frame_with_nlist import (
TestCaseSingleFrameWithNlist,
)


class TestInvarFitting(unittest.TestCase, TestCaseSingleFrameWithNlist):
def setUp(self):
TestCaseSingleFrameWithNlist.setUp(self)

def test_self_consistency(
self,
):
rng = np.random.default_rng()
nf, nloc, nnei = self.nlist.shape
ds = DescrptSeA(self.rcut, self.rcut_smth, self.sel)
dd = ds.call(self.coord_ext, self.atype_ext, self.nlist)
atype = self.atype_ext[:, :nloc]

for (
distinguish_types,
od,
nfp,
nap,
) in itertools.product(
[True, False],
[1, 2],
[0, 3],
[0, 4],
):
ifn0 = InvarFitting(
"energy",
self.nt,
ds.dim_out,
od,
numb_fparam=nfp,
numb_aparam=nap,
distinguish_types=distinguish_types,
)
ifn1 = InvarFitting.deserialize(ifn0.serialize())
if nfp > 0:
ifp = rng.normal(size=(self.nf, nfp))
else:
ifp = None
if nap > 0:
iap = rng.normal(size=(self.nf, self.nloc, nap))
else:
iap = None
ret0 = ifn0(dd[0], atype, fparam=ifp, aparam=iap)
ret1 = ifn1(dd[0], atype, fparam=ifp, aparam=iap)
np.testing.assert_allclose(ret0["energy"], ret1["energy"])

def test_self_exception(
self,
):
rng = np.random.default_rng()
nf, nloc, nnei = self.nlist.shape
ds = DescrptSeA(self.rcut, self.rcut_smth, self.sel)
dd = ds.call(self.coord_ext, self.atype_ext, self.nlist)
atype = self.atype_ext[:, :nloc]

for (
distinguish_types,
od,
nfp,
nap,
) in itertools.product(
[True, False],
[1, 2],
[0, 3],
[0, 4],
):
ifn0 = InvarFitting(
"energy",
self.nt,
ds.dim_out,
od,
numb_fparam=nfp,
numb_aparam=nap,
distinguish_types=distinguish_types,
)

if nfp > 0:
ifp = rng.normal(size=(self.nf, nfp))
else:
ifp = None
if nap > 0:
iap = rng.normal(size=(self.nf, self.nloc, nap))
else:
iap = None
with self.assertRaises(ValueError) as context:
ret0 = ifn0(dd[0][:, :, :-2], atype, fparam=ifp, aparam=iap)
self.assertIn("input descriptor", context.exception)

if nfp > 0:
ifp = rng.normal(size=(self.nf, nfp - 1))
with self.assertRaises(ValueError) as context:
ret0 = ifn0(dd[0], atype, fparam=ifp, aparam=iap)
self.assertIn("input fparam", context.exception)

if nap > 0:
iap = rng.normal(size=(self.nf, self.nloc, nap - 1))
with self.assertRaises(ValueError) as context:
ifn0(dd[0], atype, fparam=ifp, aparam=iap)
self.assertIn("input aparam", context.exception)

def test_get_set(self):
ifn0 = InvarFitting(
"energy",
self.nt,
3,
1,
)
rng = np.random.default_rng()
foo = rng.normal([3, 4])
for ii in [
"bias_atom_e",
"fparam_avg",
"fparam_inv_std",
"aparam_avg",
"aparam_inv_std",
]:
ifn0[ii] = foo
np.testing.assert_allclose(foo, ifn0[ii])
Loading

0 comments on commit f78f6d1

Please sign in to comment.