Skip to content

Commit

Permalink
Merge branch 'master' into griffin/fix-scorers-autofocus
Browse files Browse the repository at this point in the history
  • Loading branch information
gtarpenning authored Jan 6, 2025
2 parents fb77bd6 + 9735d03 commit 46dea3b
Show file tree
Hide file tree
Showing 32 changed files with 791 additions and 617 deletions.
177 changes: 122 additions & 55 deletions docs/docs/reference/gen_notebooks/feedback_prod.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,22 +18,24 @@ title: Log Feedback from Production

It is often hard to automatically evaluate a generated LLM response so, depending on your risk tolerance, you can gather direct user feedback to find areas to improve.

In this tutorial, we'll use a custom RAG chatbot as an example app with which the users can interact and which allows us to collect user feedback.
In this tutorial, we'll use a custom chatbot as an example app from which to collect user feedback.
We'll use Streamlit to build the interface and we'll capture the LLM interactions and feedback in Weave.

## Setup


```python
!pip install weave openai streamlit
!pip install weave openai streamlit wandb
!pip install set-env-colab-kaggle-dotenv -q # for env var
```

First, create a file called `secrets.toml` and add an OpenAI key so it works with [st.secrets](https://docs.streamlit.io/develop/api-reference/connections/st.secrets). You can [sign up](https://platform.openai.com/signup) on the OpenAI platform to get your own API key.


```python
# secrets.toml
OPENAI_API_KEY = "your OpenAI key"
# Add a .env file with your OpenAI and WandB API keys
from set_env import set_env

_ = set_env("OPENAI_API_KEY")
_ = set_env("WANDB_API_KEY")
```

Next, create a file called `chatbot.py` with the following contents:
Expand All @@ -42,86 +44,151 @@ Next, create a file called `chatbot.py` with the following contents:
```python
# chatbot.py

import openai
import streamlit as st
from openai import OpenAI
import wandb
from set_env import set_env

import weave

st.title("Add feedback")

_ = set_env("OPENAI_API_KEY")
_ = set_env("WANDB_API_KEY")

# highlight-next-line
@weave.op
def chat_response(prompt):
stream = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "user", "content": prompt},
*[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
],
stream=True,
)
response = st.write_stream(stream)
return {"response": response}

wandb.login()

client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
# highlight-next-line
weave_client = weave.init("feedback-example")
oai_client = openai.OpenAI()


def display_chat_messages():
for message in st.session_state.messages:
def init_states():
"""Set up session_state keys if they don't exist yet."""
if "messages" not in st.session_state:
st.session_state["messages"] = []
if "calls" not in st.session_state:
st.session_state["calls"] = []
if "session_id" not in st.session_state:
st.session_state["session_id"] = "123abc"


# highlight-next-line
@weave.op
def chat_response(full_history):
"""
Calls the OpenAI API in streaming mode given the entire conversation history so far.
full_history is a list of dicts: [{"role":"user"|"assistant","content":...}, ...]
"""
stream = oai_client.chat.completions.create(
model="gpt-4", messages=full_history, stream=True
)
response_text = st.write_stream(stream)
return {"response": response_text}


def render_feedback_buttons(call_idx):
"""Renders thumbs up/down and text feedback for the call."""
col1, col2, col3 = st.columns([1, 1, 4])

# Thumbs up button
with col1:
if st.button("👍", key=f"thumbs_up_{call_idx}"):
st.session_state.calls[call_idx].feedback.add_reaction("👍")
st.success("Thanks for the feedback!")

# Thumbs down button
with col2:
if st.button("👎", key=f"thumbs_down_{call_idx}"):
st.session_state.calls[call_idx].feedback.add_reaction("👎")
st.success("Thanks for the feedback!")

# Text feedback
with col3:
feedback_text = st.text_input("Feedback", key=f"feedback_input_{call_idx}")
if st.button("Submit Feedback", key=f"submit_feedback_{call_idx}"):
if feedback_text:
st.session_state.calls[call_idx].feedback.add_note(feedback_text)
st.success("Feedback submitted!")


def display_old_messages():
"""Displays the conversation stored in st.session_state.messages with feedback buttons"""
for idx, message in enumerate(st.session_state.messages):
with st.chat_message(message["role"]):
st.markdown(message["content"])

# If it's an assistant message, show feedback form
if message["role"] == "assistant":
# Figure out index of this assistant message in st.session_state.calls
assistant_idx = (
len(
[
m
for m in st.session_state.messages[: idx + 1]
if m["role"] == "assistant"
]
)
- 1
)
# Render thumbs up/down & text feedback
if assistant_idx < len(st.session_state.calls):
render_feedback_buttons(assistant_idx)

def get_and_process_prompt():
if prompt := st.chat_input("What is up?"):
st.session_state.messages.append({"role": "user", "content": prompt})

def display_chat_prompt():
"""Displays the chat prompt input box."""
if prompt := st.chat_input("Ask me anything!"):
# Immediately render new user message
with st.chat_message("user"):
st.markdown(prompt)

# Save user message in session
st.session_state.messages.append({"role": "user", "content": prompt})

# Prepare chat history for the API
full_history = [
{"role": msg["role"], "content": msg["content"]}
for msg in st.session_state.messages
]

with st.chat_message("assistant"):
# highlight-next-line
# Attach Weave attributes for tracking of conversation instances
with weave.attributes(
{"session": st.session_state["session_id"], "env": "prod"}
):
# This could also be weave model.predict.call if you're using a weave.Model subclass
result, call = chat_response.call(
prompt
) # call the function with `.call`, this returns a tuple with a new Call object
# highlight-next-line
st.button(
":thumbsup:",
on_click=lambda: call.feedback.add_reaction("👍"),
key="up",
)
# highlight-next-line
st.button(
":thumbsdown:",
on_click=lambda: call.feedback.add_reaction("👎"),
key="down",
)
# Call the OpenAI API (stream)
result, call = chat_response.call(full_history)

# Store the assistant message
st.session_state.messages.append(
{"role": "assistant", "content": result["response"]}
)

# Store the weave call object to link feedback to the specific response
st.session_state.calls.append(call)

# Render feedback buttons for the new message
new_assistant_idx = (
len(
[
m
for m in st.session_state.messages
if m["role"] == "assistant"
]
)
- 1
)

def init_chat_history():
if "messages" not in st.session_state:
st.session_state.messages = st.session_state.messages = []
# Render feedback buttons
if new_assistant_idx < len(st.session_state.calls):
render_feedback_buttons(new_assistant_idx)


def main():
st.session_state["session_id"] = "123abc"
init_chat_history()
display_chat_messages()
get_and_process_prompt()
st.title("Chatbot with immediate feedback forms")
init_states()
display_old_messages()
display_chat_prompt()


if __name__ == "__main__":
Expand Down
Loading

0 comments on commit 46dea3b

Please sign in to comment.