-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathweighted_crb_sampling.py
474 lines (379 loc) · 21 KB
/
weighted_crb_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import torch
import tqdm
import numpy as np
import wandb
import time
import scipy
import pickle as pkl
import numpy as np
from scipy.special import gammaln, psi
import torch.nn.functional as F
from pcdet.datasets import build_active_dataloader
from .strategy import Strategy
from pcdet.models import load_data_to_gpu
from torch.distributions import Categorical
from sklearn.cluster import kmeans_plusplus, KMeans, MeanShift, Birch
from sklearn.mixture import GaussianMixture
from scipy.stats import uniform
from sklearn.neighbors import KernelDensity
from scipy.cluster.vq import vq
from typing import Dict, List
from tools.utils.eval_utils.eval_utils import eval_one_epoch
class wCRBSampling(Strategy):
def __init__(self, model, labelled_loader, unlabelled_loader, rank, active_label_dir, cfg):
super(wCRBSampling, self).__init__(model, labelled_loader, unlabelled_loader, rank, active_label_dir, cfg)
# coefficients controls the ratio of selected subset
self.k1 = getattr(cfg.ACTIVE_TRAIN.ACTIVE_CONFIG, 'K1', 5)
self.k2 = getattr(cfg.ACTIVE_TRAIN.ACTIVE_CONFIG, 'K2', 3)
# bandwidth for the KDE in the GPDB module
self.bandwidth = getattr(cfg.ACTIVE_TRAIN.ACTIVE_CONFIG, 'BANDWDITH', 5)
# ablation study for prototype selection
self.prototype = getattr(cfg.ACTIVE_TRAIN.ACTIVE_CONFIG, 'CLUSTERING', 'kmeans++')
# controls the boundary of the uniform prior distribution
self.alpha = 0.95
self.active_label_dir = active_label_dir
self.idx_to_label = {
'1': 'CAR',
'2': 'VAN',
'3': 'BICYCLE',
'4': 'MOTORCYCLE',
'5': 'TRUCK',
'6': 'TRAILER',
'7': 'BUS',
'8': 'PEDESTRIAN',
}
def compute_dirichlet_entropy(class_weights):
"""
Compute the entropy of a Dirichlet distribution given class weights.
:param class_weights: Array-like, class weights (alphas) for the Dirichlet distribution.
:return: Entropy of the Dirichlet distribution.
"""
alpha = np.array(class_weights)
# Compute B(alpha)
B_alpha = np.exp(np.sum(gammaln(alpha)) - gammaln(np.sum(alpha)))
# Compute the sum part of the entropy formula
sum_part = -np.sum((alpha - 1) * psi(alpha))
# Final entropy calculation
entropy = np.log(B_alpha) + sum_part
return entropy
def enable_dropout(self, model):
""" Function to enable the dropout layers during test-time """
i = 0
for m in model.modules():
if m.__class__.__name__.startswith('Dropout'):
i += 1
m.train()
print('**found and enabled {} Dropout layers for random sampling**'.format(i))
def query(self, leave_pbar=True, cur_epoch=None, use_test_set=False, class_weights=None):
select_dic = {}
val_dataloader_iter = iter(self.unlabelled_loader)
val_loader = self.unlabelled_loader
total_it_each_epoch = len(self.unlabelled_loader)
# feed forward the model
if self.rank == 0:
pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar,
desc='evaluating_unlabelled_set_epoch_%d' % cur_epoch, dynamic_ncols=True)
self.model.eval()
self.enable_dropout(self.model)
num_class = len(self.labelled_loader.dataset.class_names)
check_value = []
cls_results = {}
reg_results = {}
density_list = {}
label_list = {}
'''
------------- Stage 1: Consise Label Sampling ----------------------
'''
for cur_it in range(total_it_each_epoch):
try:
unlabelled_batch = next(val_dataloader_iter)
except StopIteration:
unlabelled_dataloader_iter = iter(val_loader)
unlabelled_batch = next(unlabelled_dataloader_iter)
with torch.no_grad():
load_data_to_gpu(unlabelled_batch)
pred_dicts, _ = self.model(unlabelled_batch)
for batch_inx in range(len(pred_dicts)):
# save the meta information and project it to the wandb dashboard
if not use_test_set:
self.save_points(unlabelled_batch['frame_id'][batch_inx], pred_dicts[batch_inx])
value, counts = torch.unique(pred_dicts[batch_inx]['pred_labels'], return_counts=True)
if len(value) == 0:
weighted_entropy = 0
else:
# calculates the shannon entropy of the predicted labels of bounding boxes
unique_proportions = torch.ones(num_class).cuda()
unique_proportions[value - 1] = counts.float()
probs = unique_proportions / sum(counts)
# Weighted entropy calculation
weighted_entropy = 0
for val, prob in zip(value, probs):
class_label = self.idx_to_label[str(val.item())]
class_weight = class_weights.get(class_label, 1)
weighted_entropy -= class_weight * prob * torch.log(prob)
check_value.append(weighted_entropy)
# save the hypothetical labels for the regression heads at Stage 2
cls_results[unlabelled_batch['frame_id'][batch_inx]] = pred_dicts[batch_inx]['batch_rcnn_cls']
reg_results[unlabelled_batch['frame_id'][batch_inx]] = pred_dicts[batch_inx]['batch_rcnn_reg']
# used for sorting
select_dic[unlabelled_batch['frame_id'][batch_inx]] = weighted_entropy
# save the density records for the Stage 3
density_list[unlabelled_batch['frame_id'][batch_inx]] = pred_dicts[batch_inx]['pred_box_unique_density']
label_list[unlabelled_batch['frame_id'][batch_inx]] = pred_dicts[batch_inx]['pred_labels']
if self.rank == 0:
pbar.update()
# pbar.set_postfix(disp_dict)
pbar.refresh()
if self.rank == 0:
pbar.close()
check_value.sort()
log_data = [[idx, value] for idx, value in enumerate(check_value)]
table = wandb.Table(data=log_data, columns=['idx', 'selection_value'])
wandb.log({'value_dist_epoch_{}'.format(cur_epoch) : wandb.plot.line(table, 'idx', 'selection_value',
title='value_dist_epoch_{}'.format(cur_epoch))})
# sort and get selected_frames
select_dic = dict(sorted(select_dic.items(), key=lambda item: item[1]))
# narrow down the scope
selected_frames = list(select_dic.keys())[::-1][:int(self.k1 * self.cfg.ACTIVE_TRAIN.SELECT_NUMS)]
selected_id_list, selected_infos = [], []
unselected_id_list, unselected_infos = [], []
'''
------------- Stage 2: Representative Prototype Selection ----------------------
'''
# rebuild a dataloader for K1 samples
for i in range(len(self.pairs)):
if self.pairs[i][0] in selected_frames:
selected_id_list.append(self.pairs[i][0])
selected_infos.append(self.pairs[i][1])
else:
# no need for unselected part
if len(unselected_id_list) == 0:
unselected_id_list.append(self.pairs[i][0])
unselected_infos.append(self.pairs[i][1])
selected_id_list, selected_infos, \
unselected_id_list, unselected_infos = \
tuple(selected_id_list), tuple(selected_infos), \
tuple(unselected_id_list), tuple(unselected_infos)
active_training = [selected_id_list, selected_infos, unselected_id_list, unselected_infos]
labelled_set, _,\
grad_loader, _,\
_, _ = build_active_dataloader(
self.cfg.DATA_CONFIG,
self.cfg.CLASS_NAMES,
1,
False,
workers=self.labelled_loader.num_workers,
logger=None,
training=(not use_test_set),
active_training=active_training
)
grad_dataloader_iter = iter(grad_loader)
total_it_each_epoch = len(grad_loader)
if use_test_set:
self.model.eval()
for name, params in self.model.named_parameters():
if 'backbone_3d' in name:
params.requires_grad = False
else:
self.model.train()
fc_grad_1_embedding_list = []
index_list = []
# start looping over the K1 samples
if self.rank == 0:
pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar,
desc='inf_grads_unlabelled_set_epoch_%d' % cur_epoch, dynamic_ncols=True)
for cur_it in range(total_it_each_epoch):
try:
unlabelled_batch = next(grad_dataloader_iter)
except StopIteration:
unlabelled_dataloader_iter = iter(grad_loader)
unlabelled_batch = next(grad_dataloader_iter)
load_data_to_gpu(unlabelled_batch)
if use_test_set:
pred_dicts, _ = self.model(unlabelled_batch)
rcnn_cls_preds_per_sample = pred_dicts[0]['batch_rcnn_cls']
rcnn_cls_gt_per_sample = cls_results[unlabelled_batch['frame_id'][0]]
rcnn_reg_preds_per_sample = pred_dicts[0]['batch_rcnn_reg']
rcnn_reg_gt_per_sample = reg_results[unlabelled_batch['frame_id'][0]]
else:
pred_dicts, _, _= self.model(unlabelled_batch)
rcnn_cls_preds_per_sample = pred_dicts['rcnn_cls']
rcnn_cls_gt_per_sample = cls_results[unlabelled_batch['frame_id'][0]]
rcnn_reg_preds_per_sample = pred_dicts['rcnn_reg']
rcnn_reg_gt_per_sample = reg_results[unlabelled_batch['frame_id'][0]]
cls_loss, _ = self.model.roi_head.get_box_cls_layer_loss({'rcnn_cls': rcnn_cls_preds_per_sample,
'rcnn_cls_labels': rcnn_cls_gt_per_sample})
reg_loss = self.model.roi_head.get_box_reg_layer_loss({'rcnn_reg': rcnn_reg_preds_per_sample,
'reg_sample_targets': rcnn_reg_gt_per_sample})
# clean cache
del rcnn_cls_preds_per_sample, rcnn_cls_gt_per_sample
del rcnn_reg_preds_per_sample, rcnn_reg_gt_per_sample
torch.cuda.empty_cache()
loss = cls_loss + reg_loss.mean()
self.model.zero_grad()
loss.backward()
fc_grads_1 = self.model.roi_head.shared_fc_layer[4].weight.grad.clone().detach().cpu()
fc_grad_1_embedding_list.append(fc_grads_1)
# fc_grads_2 = self.model.roi_head.shared_fc_layer[0].weight.grad.clone().detach().cpu()
# fc_grad_2_embedding_list.append(fc_grads_2)
index_list.append(unlabelled_batch['frame_id'][0])
if self.rank == 0:
pbar.update()
# pbar.set_postfix(disp_dict)
pbar.refresh()
if self.rank == 0:
pbar.close()
# stacking gradients for K1 candiates
fc_grad_embeddings = torch.stack(fc_grad_1_embedding_list, 0)
num_sample = fc_grad_embeddings.shape[0]
fc_grad_embeddings = fc_grad_embeddings.view(num_sample, -1)
start_time = time.time()
# choose the prefered prototype selection method and select the K2 medoids
if self.prototype == 'kmeans++':
grad_centroids, selected_fc_idx = kmeans_plusplus(fc_grad_embeddings.numpy(), n_clusters=int(self.cfg.ACTIVE_TRAIN.SELECT_NUMS * self.k2), random_state=0)
elif self.prototype == 'kmeans':
km = KMeans(n_clusters=int(self.cfg.ACTIVE_TRAIN.SELECT_NUMS * self.k2), random_state=0).fit(fc_grad_embeddings.numpy())
selected_fc_idx, _ = vq(km.cluster_centers_, fc_grad_embeddings.numpy())
elif self.prototype == 'birch':
ms = Birch(n_clusters=int(self.cfg.ACTIVE_TRAIN.SELECT_NUMS * self.k2)).fit(fc_grad_embeddings.numpy())
selected_fc_idx, _ = vq(ms.subcluster_centers_, fc_grad_embeddings.numpy())
elif self.prototype == 'gmm':
gmm = GaussianMixture(n_components=int(self.cfg.ACTIVE_TRAIN.SELECT_NUMS * self.k2), random_state=0, covariance_type="diag").fit(fc_grad_embeddings.numpy())
selected_fc_idx, _ = vq(gmm.means_, fc_grad_embeddings.numpy())
else:
raise NotImplementedError
selected_frames = [index_list[i] for i in selected_fc_idx]
print("--- {%s} running time: %s seconds for fc grads---" % (self.prototype, time.time() - start_time))
fc_grad_embedding_dict = {}
fc_grad_embedding_dict[unlabelled_batch['frame_id'][0]] = {
'fc_grads': fc_grad_embeddings,
'centroid': grad_centroids,
'centroid_indices': selected_fc_idx
}
'''
------------- Stage 3: Greedy Point Cloud Density Balancing ----------------------
'''
del fc_grad_1_embedding_list
# del fc_grad_2_embedding_list
sampled_density_list = [density_list[i] for i in selected_frames]
sampled_label_list = [label_list[i] for i in selected_frames]
""" Build the uniform distribution for each class """
start_time = time.time()
density_all = torch.cat(list(density_list.values()), 0)
label_all = torch.cat(list(label_list.values()), 0)
# **************** Here, I can just use the prior knowledge of the class point density distrubtion as
# **************** my target distribution ***********************************************************
label_counts_full = [0] * num_class
unique_labels, label_counts = torch.unique(label_all, return_counts=True)
unique_labels = unique_labels.cpu().numpy()
label_counts = label_counts.cpu().numpy()
for i, label in enumerate(unique_labels):
label_counts_full[label-1] = label_counts[i]
label_to_idx = {label.item(): label.item()-1 for label in unique_labels}
idx_to_label = {idx: label for label, idx in label_to_idx.items()}
# sorted_density = [torch.sort(density_all[label_all==unique_label])[0] for unique_label in unique_labels]
sorted_density = [0] * num_class
for label in unique_labels:
label_idx = label_to_idx[label.item()]
sorted_density[label_idx] = torch.sort(density_all[label_all==label])[0]
global_density_max = [0] * num_class
global_density_high = [0] * num_class
global_density_low = [0] * num_class
for label in unique_labels:
label_idx = label_to_idx[label.item()]
if label_counts_full[label_idx].shape == 2:
global_density_max[label_idx] = int(sorted_density[label_idx][-1])
global_density_high[label_idx] = int(sorted_density[label_idx][-1])
global_density_low[label_idx] = int(sorted_density[label_idx][0])
else:
global_density_max[label_idx] = int(sorted_density[label_idx][-1])
global_density_high[label_idx] = int(sorted_density[label_idx][int(self.alpha * label_counts_full[label_idx])])
global_density_low[label_idx] = int(sorted_density[label_idx][-int(self.alpha * label_counts_full[label_idx])])
for label in unique_labels:
label = label_to_idx[label.item()]
if global_density_high[label] == global_density_low[label]:
# cnst = int(torch.mean(sorted_density[label]).item())
cnst = int(1)
global_density_high[label] = global_density_high[label] + cnst
global_density_low[label] = max(0, global_density_low[label] - cnst)
x_axis = [np.linspace(-50, int(global_density_max[i])+50, 400) for i in range(num_class)]
uniform_dist_per_cls = [uniform.pdf(x_axis[i], global_density_low[i], global_density_high[i] - global_density_low[i])
if global_density_max[i] != 0 else np.zeros_like(x_axis[i]) for i in range(num_class)]
print("--- Build the uniform distribution running time: %s seconds ---" % (time.time() - start_time))
density_list, label_list, frame_id_list = sampled_density_list, sampled_label_list, selected_frames
selected_frames: List[str] = []
selected_box_densities: torch.tensor = torch.tensor([]).cuda()
selected_box_labels: torch.tensor = torch.tensor([]).cuda()
# looping over N_r samples
if self.rank == 0:
pbar = tqdm.tqdm(total=self.cfg.ACTIVE_TRAIN.SELECT_NUMS, leave=leave_pbar,
desc='global_density_div_for_epoch_%d' % cur_epoch, dynamic_ncols=True)
for j in range(self.cfg.ACTIVE_TRAIN.SELECT_NUMS):
if j == 0: # initially, we randomly select a frame.
selected_frames.append(frame_id_list[j])
selected_box_densities = torch.cat((selected_box_densities, density_list[j]))
selected_box_labels = torch.cat((selected_box_labels, label_list[j]))
# remove selected frame
del density_list[0]
del label_list[0]
del frame_id_list[0]
else: # go through all the samples and choose the frame that can most reduce the KL divergence
best_frame_id = None
best_frame_index = None
best_inverse_coff = -1
for i in range(len(density_list)):
unique_proportions = np.zeros(num_class)
KL_scores_per_cls = np.zeros(num_class)
for cls in range(num_class):
if (label_list[i] == cls + 1).sum() == 0:
unique_proportions[cls] = 1
KL_scores_per_cls[cls] = np.inf
else:
# get existing selected box densities
selected_box_densities_cls = selected_box_densities[selected_box_labels==(cls + 1)]
# append new frame's box densities to existing one
selected_box_densities_cls = torch.cat((selected_box_densities_cls,
density_list[i][label_list[i] == (cls + 1)]))
# initialize kde
kde = KernelDensity(kernel='gaussian', bandwidth=self.bandwidth).fit(
selected_box_densities_cls.cpu().numpy()[:, None])
logprob = kde.score_samples(x_axis[cls][:, None])
KL_score_per_cls = scipy.stats.entropy(uniform_dist_per_cls[cls], np.exp(logprob))
KL_scores_per_cls[cls] = KL_score_per_cls
# ranging from 0 to 1
unique_proportions[cls] = 2 / np.pi * np.arctan(np.pi / 2 * KL_score_per_cls)
inverse_coff = np.mean(1 - unique_proportions)
# KL_save_list.append(inverse_coff)
if inverse_coff > best_inverse_coff:
best_inverse_coff = inverse_coff
best_frame_index = i
best_frame_id = frame_id_list[i]
# remove selected frame
selected_box_densities = torch.cat((selected_box_densities, density_list[best_frame_index]))
selected_box_labels = torch.cat((selected_box_labels, label_list[best_frame_index]))
del density_list[best_frame_index]
del label_list[best_frame_index]
del frame_id_list[best_frame_index]
selected_frames.append(best_frame_id)
if self.rank == 0:
pbar.update()
# pbar.set_postfix(disp_dict)
pbar.refresh()
if self.rank == 0:
pbar.close()
self.model.eval()
# returned the index of acquired bounding boxes
# TODO: save selected densities and labels for target point density computation
select_dict = {
'entropies': select_dic,
'gradient_info': fc_grad_embedding_dict,
'selected_box_densities': selected_box_densities,
'selected_box_labels': selected_box_labels,
'density_all': density_all,
'density_list': density_list,
'labels_all': label_all,
'labels_list': label_list
}
with open(self.active_label_dir / f'ablation_dict_epochs_{cur_epoch}.pkl', 'wb') as f:
pkl.dump(select_dict, f)
return selected_frames, fc_grad_embeddings