-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtemp_crb_sampling.py
479 lines (386 loc) · 20.6 KB
/
temp_crb_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import torch
import tqdm
import numpy as np
import wandb
import time
import scipy
import pickle as pkl
import torch.nn.functional as F
import random
from pcdet.datasets import build_active_dataloader
from .strategy import Strategy
from pcdet.models import load_data_to_gpu
from torch.distributions import Categorical
from sklearn.cluster import kmeans_plusplus, KMeans, MeanShift, Birch
from sklearn.mixture import GaussianMixture
from scipy.stats import uniform
from sklearn.neighbors import KernelDensity
from scipy.cluster.vq import vq
from typing import Dict, List
from tools.utils.eval_utils.eval_utils import eval_one_epoch
class tCRBSampling(Strategy):
def __init__(self, model, labelled_loader, unlabelled_loader, rank, active_label_dir, cfg):
super(tCRBSampling, self).__init__(model, labelled_loader, unlabelled_loader, rank, active_label_dir, cfg)
# coefficients controls the ratio of selected subset
self.k1 = getattr(cfg.ACTIVE_TRAIN.ACTIVE_CONFIG, 'K1', 5)
self.k2 = getattr(cfg.ACTIVE_TRAIN.ACTIVE_CONFIG, 'K2', 3)
# bandwidth for the KDE in the GPDB module
self.bandwidth = getattr(cfg.ACTIVE_TRAIN.ACTIVE_CONFIG, 'BANDWDITH', 5)
# ablation study for prototype selection
self.prototype = getattr(cfg.ACTIVE_TRAIN.ACTIVE_CONFIG, 'CLUSTERING', 'kmeans++')
# controls the boundary of the uniform prior distribution
self.alpha = 0.95
self.active_label_dir = active_label_dir
def enable_dropout(self, model):
""" Function to enable the dropout layers during test-time """
i = 0
for m in model.modules():
if m.__class__.__name__.startswith('Dropout'):
i += 1
m.train()
print('**found and enabled {} Dropout layers for random sampling**'.format(i))
@staticmethod
def temporal_stage_one(select_dict, window_size, stride, return_window_entropies=False):
select_dic_sorted = dict(sorted(select_dict.items(), key=lambda item: item[0]))
max_entropy_sum = 0
selected_window_start_index = 0
sorted_frame_ids = list(select_dic_sorted.keys())
window_entropies = []
for start_index in range(0, len(sorted_frame_ids) - window_size + 1, stride):
current_window = sorted_frame_ids[start_index:start_index + window_size]
entropy_sum = sum(select_dic_sorted[frame_id] for frame_id in current_window)
if entropy_sum > max_entropy_sum:
max_entropy_sum = entropy_sum
selected_window_start_index = start_index
window_info = {
'start_frame': current_window[0],
'end_frame': current_window[-1],
'entropy_sum': entropy_sum,
'entropies': [select_dict[i] for i in current_window]
}
window_entropies.append(window_info)
selected_frames = sorted_frame_ids[selected_window_start_index:selected_window_start_index + window_size]
if return_window_entropies:
return selected_frames, window_entropies
return selected_frames, None
@staticmethod
def temporal_stage_two(select_dict, window_size, stride, return_window_details=False):
sorted_grad_dict = dict(sorted(select_dict.items(), key=lambda item: item[0]))
window_details = []
selected_window_start_index = 0
sorted_frame_ids = list(sorted_grad_dict.keys())
max_magnitude_sum = 1e-6
max_orientation_sum = 1e-6
best_combined_score = 0
for start_index in range(0, len(sorted_frame_ids) - window_size + 1, stride):
curr_window = sorted_frame_ids[start_index:start_index + window_size]
curr_window_grads = [sorted_grad_dict[idx] for idx in curr_window]
weights = [grad.norm() for grad in curr_window_grads]
weighted_sum = sum(grad * weight for grad, weight in zip(curr_window_grads, weights))
total_weight = sum(weights)
weighted_mean_grad = weighted_sum / total_weight if total_weight != 0 else torch.zeros_like(weighted_sum)
# compute magnitude and orientation sum
magnitude_sum = 0
orientation_sum = 0
for grad in curr_window_grads:
magnitude_sum += (grad).norm()
orientation_sum += torch.nn.functional.cosine_similarity(grad.view(-1), weighted_mean_grad.view(-1), dim=0)
max_magnitude_sum = max(max_magnitude_sum, magnitude_sum)
max_orientation_sum = max(max_orientation_sum, orientation_sum)
norm_magnitude_sum = magnitude_sum/max_magnitude_sum
norm_orientation_sum = orientation_sum/max_orientation_sum
combined_sum = norm_magnitude_sum - norm_orientation_sum
if combined_sum > best_combined_score:
best_combined_score = combined_sum
selected_window_start_index = start_index
window_details.append({
'start_frame': curr_window[0],
'end_frame': curr_window[-1],
'window_grads': curr_window_grads,
'weighted_mean_grad': weighted_mean_grad,
'magnitude_sum': norm_magnitude_sum.item(),
'orientation_sum': norm_orientation_sum.item(),
'combined_sum': combined_sum.item()
})
selected_frames = sorted_frame_ids[selected_window_start_index:selected_window_start_index + window_size]
if return_window_details:
return selected_frames, window_details
return selected_frames, None
@staticmethod
def temporal_stage_three(select_dict, window_size, stride, return_window_details=False):
sorted_kl_div_dict = dict(sorted(select_dict.items(), key=lambda item: item[0]))
min_kl_div_sum = 1e6
selected_window_start_index = 0
sorted_frame_ids = list(sorted_kl_div_dict.keys())
window_details = []
for start_index in range(0, len(sorted_frame_ids) - window_size + 1, stride):
curr_window = sorted_frame_ids[start_index:start_index+window_size]
kl_div_sum = sum(sorted_kl_div_dict[idx] for idx in curr_window)
window_details.append({
'start_frame': curr_window[0],
'end_frame': curr_window[-1],
'kl_div_sum': kl_div_sum
})
if kl_div_sum < min_kl_div_sum:
min_kl_div_sum = kl_div_sum
selected_window_start_index = start_index
selected_frames = sorted_frame_ids[selected_window_start_index:selected_window_start_index + window_size]
if return_window_details:
return selected_frames, window_details
return selected_frames, None
def query(self, leave_pbar=True, cur_epoch=None, use_test_set=False, proanno=False):
select_dic = {}
val_dataloader_iter = iter(self.unlabelled_loader)
val_loader = self.unlabelled_loader
total_it_each_epoch = len(self.unlabelled_loader)
# feed forward the model
if self.rank == 0:
pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar,
desc='evaluating_unlabelled_set_epoch_%d' % cur_epoch, dynamic_ncols=True)
self.model.eval()
self.enable_dropout(self.model)
num_class = len(self.labelled_loader.dataset.class_names)
check_value = []
cls_results = {}
reg_results = {}
density_list = {}
label_list = {}
'''
------------- Stage 1: Concise Label Sampling ----------------------
'''
for cur_it in range(total_it_each_epoch):
try:
unlabelled_batch = next(val_dataloader_iter)
except StopIteration:
unlabelled_dataloader_iter = iter(val_loader)
unlabelled_batch = next(unlabelled_dataloader_iter)
with torch.no_grad():
load_data_to_gpu(unlabelled_batch)
pred_dicts, _ = self.model(unlabelled_batch)
for batch_inx in range(len(pred_dicts)):
if not use_test_set:
self.save_points(unlabelled_batch['frame_id'][batch_inx], pred_dicts[batch_inx])
value, counts = torch.unique(pred_dicts[batch_inx]['pred_labels'], return_counts=True)
if len(value) == 0:
entropy = 0
else:
# calculates the shannon entropy of the predicted labels of bounding boxes
unique_proportions = torch.ones(num_class).cuda()
unique_proportions[value - 1] = counts.float()
entropy = Categorical(probs = unique_proportions / sum(counts)).entropy()
check_value.append(entropy)
cls_results[unlabelled_batch['frame_id'][batch_inx]] = pred_dicts[batch_inx]['batch_rcnn_cls']
reg_results[unlabelled_batch['frame_id'][batch_inx]] = pred_dicts[batch_inx]['batch_rcnn_reg']
select_dic[unlabelled_batch['frame_id'][batch_inx]] = entropy
density_list[unlabelled_batch['frame_id'][batch_inx]] = pred_dicts[batch_inx]['pred_box_unique_density']
label_list[unlabelled_batch['frame_id'][batch_inx]] = pred_dicts[batch_inx]['pred_labels']
if self.rank == 0:
pbar.update()
pbar.refresh()
if self.rank == 0:
pbar.close()
check_value.sort()
select_dic = dict(sorted(select_dic.items(), key=lambda item: item[1]))
selected_frames = list(select_dic.keys())[::-1][:int(self.k1 * self.cfg.ACTIVE_TRAIN.SELECT_NUMS)]
start_time = time.time()
selected_frames, entropies_window_info = self.temporal_stage_one(
select_dict=select_dic,
window_size=int(self.k1 * self.cfg.ACTIVE_TRAIN.SELECT_NUMS),
stride=10,
return_window_entropies=True
)
if not use_test_set:
select_dict = {
'all_entropies': select_dic,
'stage_1_selected_entropies': [select_dic[i] for i in selected_frames],
'selected_frames_stage_1': selected_frames,
'density_list': density_list,
'labels_list': label_list,
'entropy_window_info': entropies_window_info
}
selected_id_list, selected_infos = [], []
unselected_id_list, unselected_infos = [], []
print("********************** STAGE 1 DONE **********************")
'''
------------- Stage 2: Representative Prototype Selection ----------------------
'''
for i in range(len(self.pairs)):
if self.pairs[i][0] in selected_frames:
selected_id_list.append(self.pairs[i][0])
selected_infos.append(self.pairs[i][1])
else:
# no need for unselected part
if len(unselected_id_list) == 0:
unselected_id_list.append(self.pairs[i][0])
unselected_infos.append(self.pairs[i][1])
selected_id_list, selected_infos, \
unselected_id_list, unselected_infos = \
tuple(selected_id_list), tuple(selected_infos), \
tuple(unselected_id_list), tuple(unselected_infos)
active_training = [selected_id_list, selected_infos, unselected_id_list, unselected_infos]
labelled_set, _,\
grad_loader, _,\
_, _ = build_active_dataloader(
self.cfg.DATA_CONFIG,
self.cfg.CLASS_NAMES,
1,
False,
workers=self.labelled_loader.num_workers,
logger=None,
training=(not use_test_set),
active_training=active_training
)
grad_dataloader_iter = iter(grad_loader)
total_it_each_epoch = len(grad_loader)
if use_test_set:
self.model.eval()
for name, params in self.model.named_parameters():
if 'backbone_3d' in name:
params.requires_grad = False
else:
self.model.train()
fc_grad_1_embedding_list = []
index_list = []
fc_grad_embedding_dict = {}
# start looping over the K1 samples
if self.rank == 0:
pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar,
desc='inf_grads_unlabelled_set_epoch_%d' % cur_epoch, dynamic_ncols=True)
for cur_it in range(total_it_each_epoch):
try:
unlabelled_batch = next(grad_dataloader_iter)
except StopIteration:
unlabelled_dataloader_iter = iter(grad_loader)
unlabelled_batch = next(grad_dataloader_iter)
load_data_to_gpu(unlabelled_batch)
if use_test_set:
pred_dicts, _ = self.model(unlabelled_batch)
rcnn_cls_preds_per_sample = pred_dicts[0]['batch_rcnn_cls']
rcnn_cls_gt_per_sample = cls_results[unlabelled_batch['frame_id'][0]]
rcnn_reg_preds_per_sample = pred_dicts[0]['batch_rcnn_reg']
rcnn_reg_gt_per_sample = reg_results[unlabelled_batch['frame_id'][0]]
else:
pred_dicts, _, _= self.model(unlabelled_batch)
rcnn_cls_preds_per_sample = pred_dicts['rcnn_cls']
rcnn_cls_gt_per_sample = cls_results[unlabelled_batch['frame_id'][0]]
rcnn_reg_preds_per_sample = pred_dicts['rcnn_reg']
rcnn_reg_gt_per_sample = reg_results[unlabelled_batch['frame_id'][0]]
cls_loss, _ = self.model.roi_head.get_box_cls_layer_loss({'rcnn_cls': rcnn_cls_preds_per_sample,
'rcnn_cls_labels': rcnn_cls_gt_per_sample})
reg_loss = self.model.roi_head.get_box_reg_layer_loss({'rcnn_reg': rcnn_reg_preds_per_sample,
'reg_sample_targets': rcnn_reg_gt_per_sample})
# clean cache
del rcnn_cls_preds_per_sample, rcnn_cls_gt_per_sample
del rcnn_reg_preds_per_sample, rcnn_reg_gt_per_sample
torch.cuda.empty_cache()
loss = cls_loss + reg_loss.mean()
self.model.zero_grad()
loss.backward()
fc_grads_1 = self.model.roi_head.shared_fc_layer[4].weight.grad.clone().detach().cpu()
fc_grad_1_embedding_list.append(fc_grads_1)
fc_grad_embedding_dict[unlabelled_batch['frame_id'][0]] = fc_grads_1
if self.rank == 0:
pbar.update()
pbar.refresh()
if self.rank == 0:
pbar.close()
selected_frames, fc_grads_window_info = self.temporal_stage_two(
select_dict=fc_grad_embedding_dict,
window_size=int(self.k2 * self.cfg.ACTIVE_TRAIN.SELECT_NUMS),
stride=4,
return_window_details=True
)
fc_grad_embedding_dict = {key: val for key, val in fc_grad_embedding_dict.items() if key in selected_frames}
fc_grad_embeddings = torch.stack(fc_grad_1_embedding_list, 0)
num_sample = fc_grad_embeddings.shape[0]
fc_grad_embeddings = fc_grad_embeddings.view(num_sample, -1)
end_time = time.time()
if not use_test_set:
select_dict['gradient_info'] = fc_grads_window_info
select_dict['selected_frames_stage_2'] = selected_frames
print("********************** STAGE 2 DONE **********************")
'''
------------- Stage 3: Greedy Point Cloud Density Balancing ----------------------
'''
del fc_grad_1_embedding_list
sampled_density_list = [density_list[i] for i in selected_frames]
sampled_label_list = [label_list[i] for i in selected_frames]
""" Build the uniform distribution for each class """
start_time = time.time()
density_all = torch.cat(list(density_list.values()), 0)
label_all = torch.cat(list(label_list.values()), 0)
label_counts_full = [0] * num_class
unique_labels, label_counts = torch.unique(label_all, return_counts=True)
unique_labels = unique_labels.cpu().numpy()
label_counts = label_counts.cpu().numpy()
for i, label in enumerate(unique_labels):
label_counts_full[label-1] = label_counts[i]
label_to_idx = {label.item(): label.item()-1 for label in unique_labels}
idx_to_label = {idx: label for label, idx in label_to_idx.items()}
sorted_density = [0] * num_class
for label in unique_labels:
label_idx = label_to_idx[label.item()]
sorted_density[label_idx] = torch.sort(density_all[label_all==label])[0]
global_density_max = [0] * num_class
global_density_high = [0] * num_class
global_density_low = [0] * num_class
for label in unique_labels:
label_idx = label_to_idx[label.item()]
if label_counts_full[label_idx].shape == 2:
global_density_max[label_idx] = int(sorted_density[label_idx][-1])
global_density_high[label_idx] = int(sorted_density[label_idx][-1])
global_density_low[label_idx] = int(sorted_density[label_idx][0])
else:
global_density_max[label_idx] = int(sorted_density[label_idx][-1])
global_density_high[label_idx] = int(sorted_density[label_idx][int(self.alpha * label_counts_full[label_idx])])
global_density_low[label_idx] = int(sorted_density[label_idx][-int(self.alpha * label_counts_full[label_idx])])
for label in unique_labels:
label = label_to_idx[label.item()]
if global_density_high[label] == global_density_low[label]:
# cnst = int(torch.mean(sorted_density[label]).item())
cnst = int(1)
global_density_high[label] = global_density_high[label] + cnst
global_density_low[label] = max(0, global_density_low[label] - cnst)
x_axis = [np.linspace(-50, int(global_density_max[i])+50, 400) for i in range(num_class)]
uniform_dist_per_cls = [uniform.pdf(x_axis[i], global_density_low[i], global_density_high[i] - global_density_low[i])
if global_density_max[i] != 0 else np.zeros_like(x_axis[i]) for i in range(num_class)]
density_list, label_list, frame_id_list = sampled_density_list, sampled_label_list, selected_frames
selected_frames: List[str] = []
selected_box_densities: torch.tensor = torch.tensor([]).cuda()
selected_box_labels: torch.tensor = torch.tensor([]).cuda()
kl_div_dict = {}
for i, densities in enumerate(density_list):
labels = label_list[i]
kl_div_frame = 0
frame_id = frame_id_list[i]
unique_classes = torch.unique(labels)
class_weight = 1 / len(unique_classes) if len(unique_classes) > 0 else 1
for cls in unique_classes:
densities_cls = densities[labels == cls]
if len(densities_cls) == 0:
continue
kde = KernelDensity(kernel='gaussian', bandwidth=self.bandwidth).fit(densities_cls.cpu().numpy()[:, None])
logprob = kde.score_samples(x_axis[cls - 1][:, None])
kl_div_cls = scipy.stats.entropy(uniform_dist_per_cls[cls - 1], np.exp(logprob))
kl_div_frame += (class_weight * kl_div_cls)
kl_div_dict[frame_id] = kl_div_frame
selected_frames, kl_window_info = self.temporal_stage_three(
select_dict=kl_div_dict,
window_size=self.cfg.ACTIVE_TRAIN.SELECT_NUMS,
stride=2,
return_window_details=True
)
self.model.eval()
print("********************** SAMPLE SELECTION DONE **********************")
if not use_test_set:
select_dict['selected_box_densities'] = selected_box_densities
select_dict['selected_box_labels'] = selected_box_labels
select_dict['labels_all'] = label_all
select_dict['density_all'] = density_all
with open(self.active_label_dir / f'ablation_dict_epochs_{cur_epoch}.pkl', 'wb') as f:
pkl.dump(select_dict, f)
return selected_frames, fc_grad_embeddings
else:
selected_frames = [i.item() for i in selected_frames]
print(selected_frames)
return selected_frames