-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBezier and linear interpolation functions.txt
613 lines (504 loc) · 18.5 KB
/
Bezier and linear interpolation functions.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
Option Explicit
Function Bezier(KnownXs As Range, KnownYs As Range, X As Double, Optional Extrapolate As Integer) As Variant
'//////////////////////////////////////////////////////////////////////////////////////////////////////////////
'This function allows you to interpolate Y values by replicating Excel's smoothing algorithm for its
'smooth line scatter plot.
'It creates a third order Bezier curve and interpolates from the relevant spline segment.
'There is an extra option to extrapolate if the X value is outside of the range of the known X values.
'Inspiration: http://blog.splitwise.com/2012/01/31/mystery-solved-the-secret-of-excel-curved-line-interpolation
'ALICE LEPISSIER, Center for Global Development, alepissier@cgdev.org
'October 2014
'This code is free and open-source. You are free to run the code for any purpose, modify it and redistribute
'it. This code is provided in the hope that it will be useful, but without any warranty; without even the
'implied warranty of merchantability or fitness for a particular purpose.
'Feedback is most welcome. Please preserve the comments in the code if you are redistributing it.
'//////////////////////////////////////////////////////////////////////////////////////////////////////////////
'///////////////////////////////////////////////////////
'ERROR TRAPPING
'///////////////////////////////////////////////////////
'Check if the X and Y vectors are the same length, and if there are enough data points for a Bezier curve.
Dim nR As Integer
nR = KnownXs.Rows.Count
If nR <> KnownYs.Rows.Count Then
GoTo NotSameRange
ElseIf nR < 4 Then
GoTo NotBezier
End If
'Check if X values are monotonically increasing.
Dim j As Integer
Dim bMono As Boolean
For j = 1 To nR - 1
If KnownXs(j, 1) <= KnownXs(j + 1) Then
bMono = True
Else: bMono = False
End If
Next j
If bMono = False Then
GoTo NotMonotonic
End If
'Return Y value if X value already exists.
For j = 1 To nR
If X = KnownXs(j) Then
Bezier = KnownYs(j)
Exit Function
End If
Next
'///////////////////////////////////////////////////////
'OPTIONAL ARGUMENT TO EXTRAPOLATE
'///////////////////////////////////////////////////////
Dim bUnique As Boolean
If Extrapolate <> 1 And (X > KnownXs(nR) Or X < KnownXs(1)) Then
GoTo OutsideRange
End If
If Extrapolate = 1 Then
If X > KnownXs(nR) Then
'Extrapolate forward
For j = 1 To nR - 1
If Not (KnownXs(nR - 1) < KnownXs(nR)) Then
bUnique = False
Else: bUnique = True
End If
Next
If bUnique = False Then
GoTo NotUniquelyValued
End If
Bezier = KnownYs(nR - 1) + _
(KnownYs(nR) - KnownYs(nR - 1)) / _
(KnownXs(nR) - KnownXs(nR - 1)) * _
(X - KnownXs(nR - 1))
Exit Function
ElseIf X < KnownXs(1) Then
'Extrapolate backward
For j = 1 To nR - 1
If Not (KnownXs(1) < KnownXs(2)) Then
bUnique = False
Else: bUnique = True
End If
Next
If bUnique = False Then
GoTo NotUniquelyValued
End If
Bezier = KnownYs(1) + _
(KnownYs(2) - KnownYs(1)) / _
(KnownXs(2) - KnownXs(1)) * _
(X - KnownXs(1))
Exit Function
End If
End If
'///////////////////////////////////////////////////////
'CONSTRUCTING THE BEZIER CURVES
'///////////////////////////////////////////////////////
'First find which segment the data point is in.
Dim S, Segment As Integer
S = Application.Match(X, KnownXs, 1)
If S >= KnownYs.Rows.Count - 1 Then
Segment = 3
ElseIf S < 2 Then
Segment = 1
Else
Segment = 2
End If
'Debug.Print S, Segment
'Assign the value to interpolate to the relevant control points.
Dim Ax, Bx, Cx, Dx, Ay, By, Cy, Dy As Variant
Select Case Segment
Case 1
'This is the first segment
Ax = KnownXs(S, 1)
Bx = KnownXs(S + 1, 1)
Cx = KnownXs(S + 2, 1)
Dx = KnownXs(S + 3, 1)
Ay = KnownYs(S, 1)
By = KnownYs(S + 1, 1)
Cy = KnownYs(S + 2, 1)
Dy = KnownYs(S + 3, 1)
Case 2
'This is a middle segment
Ax = KnownXs(S - 1, 1)
Bx = KnownXs(S, 1)
Cx = KnownXs(S + 1, 1)
Dx = KnownXs(S + 2, 1)
Ay = KnownYs(S - 1, 1)
By = KnownYs(S, 1)
Cy = KnownYs(S + 1, 1)
Dy = KnownYs(S + 2, 1)
Case 3
'This is the last segment
Ax = KnownXs(S - 2, 1)
Bx = KnownXs(S - 1, 1)
Cx = KnownXs(S, 1)
Dx = KnownXs(S + 1, 1)
Ay = KnownYs(S - 2, 1)
By = KnownYs(S - 1, 1)
Cy = KnownYs(S, 1)
Dy = KnownYs(S + 1, 1)
End Select
'Debug.Print Ax; Bx; Cx; Dx; Ay; By; Cy; Dy
'Create the distance vectors between the control points.
Dim Zero1, One2, Two3, Zero2, One3 As Variant
Zero1 = ((Ax - Bx) ^ 2 + (Ay - By) ^ 2) ^ 0.5
One2 = ((Bx - Cx) ^ 2 + (By - Cy) ^ 2) ^ 0.5
Two3 = ((Cx - Dx) ^ 2 + (Cy - Dy) ^ 2) ^ 0.5
Zero2 = ((Ax - Cx) ^ 2 + (Ay - Cy) ^ 2) ^ 0.5
One3 = ((Bx - Dx) ^ 2 + (By - Dy) ^ 2) ^ 0.5
'Debug.Print Zero1, One2, Two3, Zero2, One3
'Then compute the control points.
Dim P1ABx, P2ABx, P1BCx, P2BCx, P1CDx, P2CDx, P1ABy, P2ABy, P1BCy, P2BCy, P1CDy, P2CDy As Variant
P1ABx = Ax + (Bx - Ax) * 1 / 6
P2ABx = Bx + (Ax - Cx) * 1 / 6
P1ABy = Ay + (By - Ay) * 1 / 6
P2ABy = By + (Ay - Cy) * 1 / 6
P1CDx = Cx + (Dx - Bx) * 1 / 6
P2CDx = Dx + (Cx - Dx) * 1 / 6
P1CDy = Cy + (Dy - By) * 1 / 6
P2CDy = Dy + (Cy - Dy) * 1 / 6
'Adjust the distance between the control points.
If (Zero2 / 6 < One2 / 2) And (One3 / 6 < One2 / 2) Then
P1BCx = Bx + (Cx - Ax) * 1 / 6
P2BCx = Cx + (Bx - Dx) * 1 / 6
P1BCy = By + (Cy - Ay) * 1 / 6
P2BCy = Cy + (By - Dy) * 1 / 6
ElseIf (Zero2 / 6 >= One2 / 2) And (One3 / 6 >= One2 / 2) Then
P1BCx = Bx + (Cx - Ax) * One2 / 2 / Zero2
P2BCx = Cx + (Bx - Dx) * One2 / 2 / One3
P1BCy = By + (Cy - Ay) * One2 / 2 / Zero2
P2BCy = Cy + (By - Dy) * One2 / 2 / One3
ElseIf (Zero2 / 6 >= One2 / 2) Then
P1BCx = Bx + (Cx - Ax) * One2 / 2 / Zero2
P2BCx = Cx + (Bx - Dx) * One2 / 2 / One3 * (One3 / Zero2)
P1BCy = By + (Cy - Ay) * One2 / 2 / Zero2
P2BCy = Cy + (By - Dy) * One2 / 2 / One3 * (One3 / Zero2)
Else
P1BCx = Bx + (Cx - Ax) * One2 / 2 / Zero2 * (One2 / One3)
P2BCx = Cx + (Bx - Dx) * One2 / 2 / One3
P1BCy = By + (Cy - Ay) * One2 / 2 / Zero2 * (One2 / One3)
P2BCy = Cy + (By - Dy) * One2 / 2 / One3
End If
'Debug.Print P1ABx; P2ABx; P1BCx; P2BCx; P1CDx; P2CDx
'Debug.Print P1ABy; P2ABy; P1BCy; P2BCy; P1CDy; P2CDy
'Declare an array with the parameter t.
Dim t
t = Array(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)
'Loop through t and compute the F'x(t) and G'y(t) parametric curves by adding to the array.
Dim n As Long
Dim ABFx(), ABGy(), BCFx(), BCGy(), CDFx(), CDGy() As Variant
Dim bDimmed As Boolean
Dim bFound As Boolean
Dim P As Integer
bDimmed = False
bFound = False
For n = LBound(t) To UBound(t)
If bDimmed = True Then
'The F'x(t) and G'y(t) arrays have been created and we add to the last element
ReDim Preserve ABFx(0 To UBound(ABFx) + 1) As Variant
ReDim Preserve ABGy(0 To UBound(ABGy) + 1) As Variant
ReDim Preserve BCFx(0 To UBound(BCFx) + 1) As Variant
ReDim Preserve BCGy(0 To UBound(BCGy) + 1) As Variant
ReDim Preserve CDFx(0 To UBound(CDFx) + 1) As Variant
ReDim Preserve CDGy(0 To UBound(CDGy) + 1) As Variant
Else
'We dimension the arrays and flag them as such
ReDim ABFx(0 To 0) As Variant
ReDim ABGy(0 To 0) As Variant
ReDim BCFx(0 To 0) As Variant
ReDim BCGy(0 To 0) As Variant
ReDim CDFx(0 To 0) As Variant
ReDim CDGy(0 To 0) As Variant
bDimmed = True
End If
'Construct the parametric Bezier curves F'x(t) and G'y(t) with the Bernstein polynomials.
'These are for the first segment.
ABFx(UBound(ABFx)) = (Ax * (1 - t(n)) ^ 3 + P1ABx * 3 * t(n) * (1 - t(n)) ^ 2 + P2ABx * 3 * t(n) ^ 2 * (1 - t(n)) + Bx * t(n) ^ 3)
ABGy(UBound(ABGy)) = (Ay * (1 - t(n)) ^ 3 + P1ABy * 3 * t(n) * (1 - t(n)) ^ 2 + P2ABy * 3 * t(n) ^ 2 * (1 - t(n)) + By * t(n) ^ 3)
'These are for middle segments.
BCFx(UBound(BCFx)) = (Bx * (1 - t(n)) ^ 3 + P1BCx * 3 * t(n) * (1 - t(n)) ^ 2 + P2BCx * 3 * t(n) ^ 2 * (1 - t(n)) + Cx * t(n) ^ 3)
BCGy(UBound(BCGy)) = (By * (1 - t(n)) ^ 3 + P1BCy * 3 * t(n) * (1 - t(n)) ^ 2 + P2BCy * 3 * t(n) ^ 2 * (1 - t(n)) + Cy * t(n) ^ 3)
'These are for the last segment.
CDFx(UBound(CDFx)) = (Cx * (1 - t(n)) ^ 3 + P1CDx * 3 * t(n) * (1 - t(n)) ^ 2 + P2CDx * 3 * t(n) ^ 2 * (1 - t(n)) + Dx * t(n) ^ 3)
CDGy(UBound(CDGy)) = (Cy * (1 - t(n)) ^ 3 + P1CDy * 3 * t(n) * (1 - t(n)) ^ 2 + P2CDy * 3 * t(n) ^ 2 * (1 - t(n)) + Dy * t(n) ^ 3)
'Debug.Print ABFx(n); ABGy(n)
'Debug.Print BCFx(n); BCGy(n)
'Debug.Print CDFx(n); CDGy(n)
'Find the closest points on the Bezier curve to interpolate from.
If bFound = False Then
Select Case Segment
Case 1
If ABFx(n) > X Then
bFound = True
P = n
End If
Case 2
If BCFx(n) > X Then
bFound = True
P = n
End If
Case 3
If CDFx(n) > X Then
bFound = True
P = n
End If
End Select
End If
Next n
'Debug.Print P;
'///////////////////////////////////////////////////////
'INTERPOLATION
'///////////////////////////////////////////////////////
Dim lin As Variant
'We now linearly interpolate between the points on the Bezier curves.
Select Case Segment
Case 1
'This is the first segment.
lin = ABGy(P - 1) + _
(ABGy(P) - ABGy(P - 1)) / _
(ABFx(P) - ABFx(P - 1)) * _
(X - ABFx(P - 1))
Case 2
'This is a middle segment.
lin = BCGy(P - 1) + _
(BCGy(P) - BCGy(P - 1)) / _
(BCFx(P) - BCFx(P - 1)) * _
(X - BCFx(P - 1))
Case 3
'This is the last segment.
lin = CDGy(P - 1) + _
(CDGy(P) - CDGy(P - 1)) / _
(CDFx(P) - CDFx(P - 1)) * _
(X - CDFx(P - 1))
End Select
'This is the result.
Bezier = lin
Exit Function
'///////////////////////////////////////////////////////
'ERROR HANDLERS
'///////////////////////////////////////////////////////
NotSameRange:
MsgBox "The number of X values isn't the same as the number of Y values.", , "Warning"
Bezier = CVErr(xlErrRef)
Exit Function
NotBezier:
MsgBox "You need at least 4 data points for Bézier interpolation." _
& Chr(13) & "With less than 3 data points, you can only do linear interpolation." _
& Chr(13) & "Try the Linerp() function.", , "Warning"
Bezier = CVErr(xlErrRef)
Exit Function
NotMonotonic:
MsgBox "The X values need to be monotonically increasing." _
& Chr(13) & "Either sort your X values or interpolate on the Y axis.", , "Error"
Bezier = CVErr(xlErrValue)
Exit Function
NotUniquelyValued:
MsgBox "The endpoint X values need to be uniquely valued for the extrapolation to work.", , "Error"
Bezier = CVErr(xlErrValue)
Exit Function
OutsideRange:
MsgBox "The X value to interpolate is outside the range of known X values." _
& Chr(13) & "Type 1 to include the optional argument to extrapolate backward and forward.", , "Warning"
Bezier = CVErr(xlErrName)
Exit Function
End Function
Function Linerp(KnownXs As Range, KnownYs As Range, X As Double)
'//////////////////////////////////////////////////////////////////////////////////////////////////////////////
'This function does piecewise linear interpolation for X and Y data in columns or rows (any order).
'If the X to interpolate is outside the range of known Xs, then the function
'extrapolates backward and forward.
'The function can deal with increasing and decreasing X data, but the data needs to be monotonic.
'ALICE LEPISSIER, Center for Global Development, alepissier@cgdev.org
'October 2014
'This code is free and open-source. You are free to run the code for any purpose, modify it and redistribute
'it. This code is provided in the hope that it will be useful, but without any warranty; without even the
'implied warranty of merchantability or fitness for a particular purpose.
'Feedback is most welcome. Please preserve the comments in the code if you are redistributing it.
'//////////////////////////////////////////////////////////////////////////////////////////////////////////////
'///////////////////////////////////////////////////////
'DIMENSION THE VARIABLES
'///////////////////////////////////////////////////////
Dim Row, Col As Integer
Dim R, C As Integer
Dim nR, nC As Integer
Dim bUnique As Boolean
Dim j As Integer
Dim bMonoInc, bMonoDec, bIncreasing As Integer
bMonoInc = 0
bMonoDec = 0
Row = KnownXs.Rows.Count + KnownYs.Rows.Count
Col = KnownXs.Columns.Count + KnownYs.Columns.Count
nR = KnownXs.Rows.Count
nC = KnownXs.Columns.Count
'///////////////////////////////////////////////////////
'ERROR TRAPPING
'///////////////////////////////////////////////////////
'Check if there are enough data points to interpolate.
If Row < 2 And Col < 2 Then Exit Function
'Check if the X and Y vectors are the same length.
If nC <> KnownYs.Columns.Count Or nR <> KnownYs.Rows.Count Then
GoTo NotSameRange
End If
If nR = 2 Then
'Data is in rows
GoTo ROW_DATA
ElseIf nC = 1 Then
'Data is in columns
GoTo COLUMN_DATA
End If
'///////////////////////////////////////////////////////
ROW_DATA:
'///////////////////////////////////////////////////////
'Check if X values are monotonically increasing or decreasing.
For j = 1 To nC - 1
If KnownXs(, j) <= KnownXs(, j + 1) Then
bMonoInc = bMonoInc + 1
End If
If KnownXs(, j) >= KnownXs(, j + 1) Then
bMonoDec = bMonoDec + 1
End If
Next
If bMonoInc < nC - 1 And bMonoDec < nC - 1 Then
GoTo NotMonotonic
End If
'Check for strict monotonicity.
For j = 1 To nC - 1
If KnownXs(, j) < KnownXs(, j + 1) Then
bIncreasing = 1
ElseIf KnownXs(, j) > KnownXs(, j + 1) Then
bIncreasing = 0
End If
Next j
'Extrapolate forward with strictly increasing data.
If X > KnownXs(, nC) And bIncreasing = 1 Then
If KnownXs(, nC - 1) <> KnownXs(, nC) Then
Linerp = KnownYs(, nC - 1) + (KnownYs(, nC) - KnownYs(, nC - 1)) / (KnownXs(, nC) - KnownXs(, nC - 1)) * (X - KnownXs(, nC - 1))
Exit Function
Else
GoTo NotUniquelyValued
End If
End If
'Extrapolate backward with strictly increasing data.
If X < KnownXs(, 1) And bIncreasing = 1 Then
If KnownXs(, 1) <> KnownXs(, 2) Then
Linerp = KnownYs(, 1) + (KnownYs(, 2) - KnownYs(, 1)) / (KnownXs(, 2) - KnownXs(, 1)) * (X - KnownXs(, 1))
Exit Function
Else
GoTo NotUniquelyValued
End If
End If
'Extrapolate forward with strictly decreasing data.
If X > KnownXs(, 1) And bIncreasing = 0 Then
If KnownXs(, 1) <> KnownXs(, 2) Then
Linerp = KnownYs(, 1) + (KnownYs(, 2) - KnownYs(, 1)) / (KnownXs(, 2) - KnownXs(, 1)) * (X - KnownXs(, 1))
Exit Function
Else
GoTo NotUniquelyValued
End If
End If
'Extrapolate backward with strictly decreasing data.
If X < KnownXs(, nC) And bIncreasing = 0 Then
If KnownXs(, nC - 1) <> KnownXs(, nC) Then
Linerp = KnownYs(, nC - 1) + (KnownYs(, nC) - KnownYs(, nC - 1)) / (KnownXs(, nC) - KnownXs(, nC - 1)) * (X - KnownXs(, nC - 1))
Exit Function
Else
GoTo NotUniquelyValued
End If
End If
'Return Y value if X value already exists.
For C = 1 To nC
If X = KnownXs(, C) Then
Linerp = KnownYs(, C)
Exit Function
End If
'Piecewise linear interpolation.
If (bIncreasing = 1 And X < KnownXs(, C)) Or (bIncreasing = 0 And X > KnownXs(, C)) Then
Linerp = KnownYs(, C - 1) + (KnownYs(, C) - KnownYs(, C - 1)) / (KnownXs(, C) - KnownXs(, C - 1)) * (X - KnownXs(, C - 1))
Exit Function
End If
Next
Exit Function
'///////////////////////////////////////////////////////
COLUMN_DATA:
'///////////////////////////////////////////////////////
'Check if X values are monotonically increasing or decreasing.
For j = 1 To nR - 1
If KnownXs(j) <= KnownXs(j + 1) Then
bMonoInc = bMonoInc + 1
End If
If KnownXs(j) >= KnownXs(j + 1) Then
bMonoDec = bMonoDec + 1
End If
Next
If bMonoInc < nR - 1 And bMonoDec < nR - 1 Then
GoTo NotMonotonic
End If
'Check for strict monotonicity.
For j = 1 To nR - 1
If KnownXs(j) < KnownXs(j + 1) Then
bIncreasing = 1
ElseIf KnownXs(j) > KnownXs(j + 1) Then
bIncreasing = 0
End If
Next j
'Extrapolate forward with strictly increasing data.
If X > KnownXs(nR) And bIncreasing = 1 Then
If KnownXs(nR - 1) <> KnownXs(nR) Then
Linerp = KnownYs(nR - 1) + (KnownYs(nR) - KnownYs(nR - 1)) / (KnownXs(nR) - KnownXs(nR - 1)) * (X - KnownXs(nR - 1))
Exit Function
Else
GoTo NotUniquelyValued
End If
End If
'Extrapolate backward with strictly increasing data.
If X < KnownXs(1) And bIncreasing = 1 Then
If KnownXs(1) <> KnownXs(2) Then
Linerp = KnownYs(1) + (KnownYs(2) - KnownYs(1)) / (KnownXs(2) - KnownXs(1)) * (X - KnownXs(1))
Exit Function
Else
GoTo NotUniquelyValued
End If
End If
'Extrapolate forward with strictly decreasing data.
If X > KnownXs(1) And bIncreasing = 0 Then
If KnownXs(1) <> KnownXs(2) Then
Linerp = KnownYs(1) + (KnownYs(2) - KnownYs(1)) / (KnownXs(2) - KnownXs(1)) * (X - KnownXs(1))
Exit Function
Else
GoTo NotUniquelyValued
End If
End If
'Extrapolate backward with strictly decreasing data.
If X < KnownXs(nR) And bIncreasing = 0 Then
If KnownXs(nR - 1) <> KnownXs(nR) Then
Linerp = KnownYs(nR - 1) + (KnownYs(nR) - KnownYs(nR - 1)) / (KnownXs(nR) - KnownXs(nR - 1)) * (X - KnownXs(nR - 1))
Exit Function
Else
GoTo NotUniquelyValued
End If
End If
'Return Y value if X value already exists.
For R = 1 To nR
If X = KnownXs(R) Then
Linerp = KnownYs(R)
Exit Function
End If
'Piecewise linear interpolation.
If (bIncreasing = 1 And X < KnownXs(R)) Or (bIncreasing = 0 And X > KnownXs(R)) Then
Linerp = KnownYs(R - 1) + (KnownYs(R) - KnownYs(R - 1)) / (KnownXs(R) - KnownXs(R - 1)) * (X - KnownXs(R - 1))
Exit Function
End If
Next
Exit Function
'///////////////////////////////////////////////////////
'ERROR HANDLERS
'///////////////////////////////////////////////////////
NotSameRange:
MsgBox "The number of X values isn't the same as the number of Y values.", , "Warning"
Linerp = CVErr(xlErrRef)
Exit Function
NotMonotonic:
MsgBox "Your X values are not monotonic." _
& Chr(13) & "Either sort your X values or interpolate on the Y axis.", , "Error"
Linerp = CVErr(xlErrValue)
Exit Function
NotUniquelyValued:
MsgBox "The endpoint X values need to be uniquely valued for the extrapolation to work.", , "Error"
Linerp = CVErr(xlErrValue)
Exit Function
End Function