-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
188 lines (160 loc) · 6.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
import logging
import os
import pickle
import random
import numpy as np
import torch
import torch.nn as nn
from attacks import aa, noatt, pgd
from models.cores import fixup_resnet, nf_resnet, prn_20, resnet
from models.wrappers import at, clean, match_at, pair_at, trades
from utils import autoattack, data, fio, log, mdl
parser = argparse.ArgumentParser(description='Train config file')
parser.add_argument('config_file', type=str, default='config/config.yml',
help='path to config file')
args = parser.parse_args()
config_file = args.config_file
# Load meta hyperparameters
config = fio.yaml_load(config_file)
exp_id = config['meta']['exp_id']
dataset = config['meta']['dataset']
exp_core = config['meta']['exp_core']
exp_wrapper = config['meta']['exp_wrapper']
exp_attacker = config['meta']['exp_attacker']
data_path = config['meta']['data_path']
results_path = config['meta']['results_path']
gpu_ids = config['meta']['gpu_ids']
random_seed = config['meta']['random_seed']
# Load training hyperparameters
batch_size = config['train']['batch_size']
num_workers = config['train']['num_workers']
val_ratio = config['train']['val_ratio']
train_epochs = config['train']['train_epochs']
# Set random seeds
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
# Create directory to push results
exp_name = f'e{exp_id}_{fio.get_exp_hash()}'
exp_res_path = os.path.join(results_path, dataset, exp_wrapper, exp_core, exp_name)
log_save_path = os.path.join(exp_res_path, 'log.txt')
model_save_path = os.path.join(exp_res_path, 'checkpoints')
config_save_path = os.path.join(exp_res_path, 'tr_config.yml')
os.makedirs(model_save_path)
os.system(f'cp {config_file} {config_save_path}')
# Initialize logger
lg = log.Logger(log_save_path, config)
fio.setup_text_logger('tmp', log_dir='/tmp/', append=False, log_level=logging.DEBUG, console_out=True)
lg.print('Logger initialized')
# Initialize GPUs
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids
device = 'cuda' if torch.cuda.is_available() else 'cpu'
lg.print(f'Using {device} for training')
# Get train/val/test data
data_loader = {
'mnist': data.get_mnist,
'cifar10': data.get_cifar10,
'cifar100': data.get_cifar100,
'imagenette': data.get_imagenette,
}[dataset]
train_loader, val_loader, test_loader = data_loader(
data_path, batch_size, num_workers, val_ratio, random_seed)
# Define core model
core_builder = {
'prn_20': prn_20.PreActResNet_20_Core,
'frn_20': fixup_resnet.fixup_resnet20,
'nf_resnet_26': nf_resnet.NF_ResNet_Core,
'resnet34': resnet.resnet34,
}[exp_core]
core_model = core_builder(config['core']).to(device)
# Define eval attacker
attack_builder = {
'noatt': noatt.NoAttack,
'pgd': pgd.PGDAttack,
}[exp_attacker]
eval_attacker = attack_builder(config['attack']).to(device)
# Define wrapper model
wrapper_builder = {
'clean': clean.CleanWrapper,
'at': at.ATWrapper,
'trades': trades.TRADESWrapper,
'pair_at': pair_at.PairATWrapper,
'match_at': match_at.MatchATWrapper,
}[exp_wrapper]
eval_attacker.device = device
wrapper_model = wrapper_builder(core_model, eval_attacker, config)
if device == 'cuda':
wrapper_model = nn.DataParallel(wrapper_model)
torch.backends.cudnn.benchmark = True
# Print description of job
lg.print('-------------------------------------------')
lg.print(f'Training {exp_name} with:')
lg.print(f'Dataset: {dataset}')
lg.print(f'Core model: {exp_core}')
lg.print(f'Wrapper method: {exp_wrapper}')
lg.print(f'Evaluation attacker: {exp_attacker}')
lg.print('-------------------------------------------')
if config['train']['load_pretrain']:
lg.print('Loading checkpoint...')
pt_exp_name = config['test']['exp_name']
pt_exp_res_path = os.path.join(results_path, dataset, exp_wrapper, exp_core, pt_exp_name)
pt_model_save_path = os.path.join(pt_exp_res_path, 'checkpoints')
load_epoch = config['test']['load_epoch']
epoch_state = torch.load(os.path.join(pt_model_save_path, f'epoch_{load_epoch:02d}.pth'))
core_model.load_state_dict(epoch_state)
wrapper_model.module.update_epoch(lg)
# Train model for specified number of epochs
best_acc, best_epoch = 0, 0
for e in range(1, train_epochs + 1):
lg.print(f'Training epoch {e} of {train_epochs}')
# Backpropagate on each batch
for batch_idx, (x, y) in enumerate(train_loader):
x, y = x.to(device), y.to(device)
# Get model output
wrapper_model.train()
core_model.grad_prep()
train_loss = wrapper_model(x, y)
# Backpropagate the loss
train_loss.mean().backward()
core_model.grad_update()
wrapper_model.module.update_step()
if train_loss.isnan().any():
raise ValueError('NaN loss!')
# Print statistics
if batch_idx % 100 == 0:
message = f'Batch: {batch_idx}, loss: {train_loss.mean().item():.4f}'
if isinstance(wrapper_model.module, (pair_at.PairATWrapper, match_at.MatchATWrapper)):
message += f', reg: {wrapper_model.module.latest_reg:.4f}'
lg.print(message)
# Periodically save and evaluate model
if e % 2 == 0:
# Save model checkpoint
torch.save(core_model.state_dict(), os.path.join(model_save_path, f'epoch_{e:02d}.pth'))
lg.print(f'Saved checkpoint epoch_{e:02d}.pth')
# Evaluate model on the validation set
with torch.no_grad():
adv_acc = mdl.evaluate(config, wrapper_model, val_loader, device, lg, 'val')
if adv_acc >= best_acc:
best_acc = adv_acc
best_epoch = e
# Update epoch-level parameters
wrapper_model.module.update_epoch(lg)
# Reset best acc if there's fine-tuning
if isinstance(wrapper_model.module, match_at.MatchATWrapper):
if config['wrapper']['match_tune_epoch'] == e:
best_acc = 0
if config['wrapper']['track_stats']:
pickle.dump(wrapper_model.module.stats, open(f'train_stats_{exp_name}.pkl', 'wb'))
# Load best epoch
path = os.path.join(model_save_path, f'epoch_{best_epoch:02d}.pth')
core_model.load_state_dict(torch.load(path))
core_model.eval()
# Evaluate fully-trained model on the test set
mdl.evaluate(wrapper_model, test_loader, device, lg, 'test')
lg.print(f'Best adv acc: {best_acc * 100:.2f}')
_, _, test_loader = data_loader(
data_path, config['test']['batch_size'], num_workers, val_ratio, random_seed)
adv_acc, clean_acc = autoattack.run_autoattack(config, wrapper_model, test_loader, device)
lg.print(f'Clean: {clean_acc * 100:.2f} | Adv: {adv_acc * 100:.2f}')