diff --git a/lm_human_preference_details/summarize/reward.py b/lm_human_preference_details/summarize/reward.py index 5ed3524..a5de811 100644 --- a/lm_human_preference_details/summarize/reward.py +++ b/lm_human_preference_details/summarize/reward.py @@ -269,6 +269,13 @@ def evaluate(args: Args, accelerator, tokenizer, model, dataloader): args.local_batch_size = args.local_micro_batch_size * args.gradient_accumulation_steps args.micro_batch_size = int(args.local_micro_batch_size * args.world_size) args.batch_size = int(args.local_batch_size * args.world_size) + tokenizer = AutoTokenizer.from_pretrained( + args.base_model, + padding_side="right", + trust_remote_code=True, + ) + # we use the padding token manually but do not resize the token embedding of the model + tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # load dataset dataset = load_dataset(args.label_dataset, split="train") @@ -288,7 +295,6 @@ def evaluate(args: Args, accelerator, tokenizer, model, dataloader): ], ) dataloader = DataLoader(dataset, batch_size=args.local_micro_batch_size) - eval_datasets = [] eval_dataloaders = {} for split in ["validation", "validation_cnndm"]: validation_dataset = load_dataset(args.label_dataset, split=split).flatten() @@ -309,7 +315,6 @@ def evaluate(args: Args, accelerator, tokenizer, model, dataloader): "policies", ], ) - eval_datasets.append(validation_dataset) eval_dataloaders[split] = DataLoader(validation_dataset, batch_size=args.local_eval_batch_size) accelerator.print("The number of samples in validation_dataset", len(validation_dataset)) accelerator.print("The number of samples in dataset", len(dataset)) @@ -345,13 +350,7 @@ def evaluate(args: Args, accelerator, tokenizer, model, dataloader): np.random.seed(local_seed) torch.manual_seed(local_seed) torch.backends.cudnn.deterministic = True - tokenizer = AutoTokenizer.from_pretrained( - args.base_model, - padding_side="right", - trust_remote_code=True, - ) - # we use the padding token manually but do not resize the token embedding of the model - tokenizer.add_special_tokens({"pad_token": "[PAD]"}) + model_config = AutoConfig.from_pretrained(args.base_model) configure_dropout(model_config, args.dropout_layer_keys, 0.0) # disable dropout scalar_model_config = ScalarModelConfig(