Skip to content

Bridge package enabling seamless integration between Model Context Protocol (MCP) servers and AI SDK tools. Supports multiple server types, real-time communication, and TypeScript.

License

Notifications You must be signed in to change notification settings

vrknetha/aisdk-mcp-bridge

Repository files navigation

AISDK MCP Bridge

A bridge package that enables seamless integration between the Model Context Protocol (MCP) and AI SDK, allowing for efficient communication and tool execution between MCP servers and AI models.

npm version License: MIT

Features

  • Seamless integration between MCP servers and AI SDK
  • Support for various MCP server types (Node.js, Python, UVX)
  • Multi-server support with independent configuration
  • Flexible configuration through mcp.config.json
  • TypeScript support with full type definitions
  • Robust error handling and logging
  • Easy-to-use API for tool execution

Installation

npm install aisdk-mcp-bridge

Quick Start

  1. Create an mcp.config.json file in your project root:
{
  "mcpServers": {
    "twitter-mcp": {
      "command": "npx",
      "args": ["-y", "@enescinar/twitter-mcp"],
      "env": {
        "API_KEY": "your-twitter-api-key",
        "API_SECRET_KEY": "your-twitter-api-secret",
        "ACCESS_TOKEN": "your-twitter-access-token",
        "ACCESS_TOKEN_SECRET": "your-twitter-access-token-secret"
      }
    },
    "firecrawl": {
      "command": "npx",
      "args": ["-y", "mcp-server-firecrawl"],
      "env": {
        "FIRE_CRAWL_API_KEY": "your-firecrawl-api-key",
        "FIRE_CRAWL_API_URL": "https://api.firecrawl.com"
      }
    }
  }
}
  1. Import and use the bridge in your code:
import { generateText } from 'ai';
import { google } from '@ai-sdk/google';
import { getMcpTools, cleanupMcp, initializeMcp } from 'aisdk-mcp-bridge';
import dotenv from 'dotenv';
dotenv.config();

async function main() {
  try {
    // Initialize MCP
    await initializeMcp({ debug: true });

    // Get tools from all servers
    const allTools = await getMcpTools({ debug: true });

    // Or get tools from a specific server
    const twitterTools = await getMcpTools({
      debug: true,
      serverName: 'twitter-mcp',
    });

    // Use tools with AI SDK
    const result = await generateText({
      model: google('gemini-1.5-pro'),
      messages: [
        {
          role: 'system',
          content:
            'You are an AI assistant that uses various tools to help users.',
        },
        {
          role: 'user',
          content: 'Your task description here',
        },
      ],
      tools: twitterTools, // or allTools for all available tools
    });

    console.log('Result:', result.text);
  } finally {
    // Clean up resources
    await cleanupMcp();
  }
}

main().catch(error => {
  console.error('Error:', error);
  process.exit(1);
});

Configuration

The mcp.config.json file supports multiple servers and communication modes. Each server can be configured independently.

Server Configuration Examples:

Twitter MCP Server

{
  "mcpServers": {
    "twitter-mcp": {
      "command": "npx",
      "args": ["-y", "@enescinar/twitter-mcp"],
      "env": {
        "API_KEY": "your-twitter-api-key",
        "API_SECRET_KEY": "your-twitter-api-secret",
        "ACCESS_TOKEN": "your-twitter-access-token",
        "ACCESS_TOKEN_SECRET": "your-twitter-access-token-secret"
      }
    }
  }
}

Firecrawl Server

{
  "mcpServers": {
    "firecrawl": {
      "command": "npx",
      "args": ["-y", "mcp-server-firecrawl"],
      "env": {
        "FIRE_CRAWL_API_KEY": "your-firecrawl-api-key",
        "FIRE_CRAWL_API_URL": "https://api.firecrawl.com"
      }
    }
  }
}

SSE Server

{
  "mcpServers": {
    "sse-server": {
      "command": "node",
      "args": ["./server.js"],
      "mode": "sse",
      "sseOptions": {
        "endpoint": "http://localhost:3000/events",
        "headers": {},
        "reconnectTimeout": 5000
      }
    }
  }
}

Server Modes

The bridge supports different communication modes:

  1. stdio Mode (Default)

    • Direct communication through standard input/output
    • Best for simple integrations and local development
    • Low latency and minimal setup required
  2. SSE Mode (Server-Sent Events)

    • Real-time, one-way communication from server to client
    • Ideal for streaming updates and long-running operations
    • Built-in reconnection handling

API Reference

Core Functions

initializeMcp(options?: InitOptions): Promise<void>

Initialize the MCP service with the provided options.

interface InitOptions {
  configPath?: string; // Path to mcp.config.json
  debug?: boolean; // Enable debug logging
}

getMcpTools(options?: ToolOptions): Promise<ToolSet>

Get AI SDK-compatible tools from MCP servers.

interface ToolOptions {
  debug?: boolean; // Enable debug logging
  serverName?: string; // Optional server name to get tools from a specific server
}

executeMcpFunction(serverName: string, functionName: string, args: Record<string, unknown>): Promise<MCPToolResult>

Execute a specific function on an MCP server directly.

// Example
const result = await executeMcpFunction('twitter-mcp', 'postTweet', {
  text: 'Hello from MCP!',
});

Core Types

MCPConfig (alias for MCPServersConfig)

Configuration type for MCP servers.

interface MCPConfig {
  mcpServers: {
    [key: string]: ServerConfig;
  };
}

ServerConfig

Configuration for individual MCP servers.

interface ServerConfig {
  command: string;
  args?: string[];
  env?: Record<string, string>;
  mode?: 'stdio' | 'sse';
  sseOptions?: {
    endpoint: string;
    headers?: Record<string, string>;
    reconnectTimeout?: number;
  };
}

MCPToolResult

Result type for MCP tool executions.

interface MCPToolResult {
  success: boolean;
  data?: unknown;
  error?: string;
}

cleanupMcp(): Promise<void>

Clean up MCP resources and close all server connections.

Error Handling

The bridge includes comprehensive error handling for:

  • Server initialization failures
  • Communication errors
  • Tool execution failures
  • Configuration issues
  • Server connection issues

Logging

The bridge provides detailed logging through:

  • mcp-tools.log: Server-side tool execution logs
  • Console output for debugging and errors

Debug Logging

You can enable detailed debug logging by setting the DEBUG environment variable:

# Enable all debug logs
DEBUG=* npm start

# Enable MCP debug logs
DEBUG=mcp npm start

# Enable all MCP namespace logs
DEBUG=mcp:* npm start

Debug logs will show:

  • Server initialization and shutdown events
  • Tool registration and execution details
  • Communication with MCP servers
  • Schema conversions and validations
  • Error details with stack traces
  • Performance metrics and timing information

Log Types

The logging system supports three types of logs:

  • info: General operational information
  • debug: Detailed debugging information (requires DEBUG env variable)
  • error: Error messages and stack traces (always logged)

Log File

All logs are written to logs/mcp-tools.log with the following format:

[TIMESTAMP] [TYPE] Message
{Optional JSON data}

Development

Prerequisites

  • Node.js 20.x or higher
  • npm 7.x or higher

Setup

  1. Clone the repository
  2. Install dependencies:
npm install

Testing

Run the test suite:

npm test

Run specific tests:

npm run test:twitter
npm run test:firecrawl

Contributing

We welcome contributions! Please see our Contributing Guide for details on:

  • Setting up the development environment
  • Coding standards
  • Pull request process
  • Adding new MCP servers

Please note that this project is released with a Code of Conduct. By participating in this project you agree to abide by its terms.

Support

For support:

  1. Check the documentation
  2. Search existing issues
  3. Create a new issue if your problem persists

Changelog

See CHANGELOG.md for a list of changes and migration guides.

Security

For security issues, please email ravi@caw.tech instead of using the public issue tracker.

Authors

See also the list of contributors who participated in this project.

Acknowledgments

  • AI SDK team for their excellent SDK
  • MCP community for the protocol specification
  • All contributors who have helped with the project

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

Bridge package enabling seamless integration between Model Context Protocol (MCP) servers and AI SDK tools. Supports multiple server types, real-time communication, and TypeScript.

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published