-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMDF.py
176 lines (138 loc) · 7.05 KB
/
MDF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# -*- coding: utf-8 -*-
import spotpy
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error
from math import sqrt
import importlib
import subprocess
import DALEC_GRASS
def run(workingdir,sitename) :
class abc_dalec() :
def __init__(self):
self.workingdir = workingdir
self.sitename = sitename
## Load drivers
self.met = np.array(np.load('%s/%s_M.npy' %(self.workingdir,self.sitename)),order="F")
self.met = np.append(self.met[:,:52],self.met,axis=1) ## add 1 spinup year
self.met[0,:] = np.arange(1,len(self.met[0,:])+1) ## re-create index
## Fill DALEC-Grass input variables
self.deltat = np.zeros([(self.met.shape[1])]) + 7 # weekly runs
self.nodays = self.met.shape[1]
self.noyears = int(self.nodays/float(52)) - 1 # weekly runs
self.start = 1
self.finish = int(self.nodays)
self.nopools = 6
self.nofluxes = 21
self.nopars = 34
self.nomet = self.met.shape[0]
self.lat = 50.77
self.version_code = 1
#### Load LAI observations
self.obs_lai = np.load("%s/%s_O.npy" %(self.workingdir,self.sitename))
def parameters(self):
#### DEFAULT PRIORS
pars_lims = {0: [1e-3, 0.1], # Decomp rate [1e-5, 0.01]
1: [0.43, 0.48], # GPP to resp fraction [~0.46]
2: [0.75, 1.5], # GSI sens leaf growth [1.0, 1.025]
3: [0.10, 1.0], # NPP belowground allocation exponential parameter [0.01, 1.00]
4: [1e-3, 2.0], # GSI max leaf turnover [1e-5, 0.2]
5: [1e-3, 1e-1], # TOR roots [0.0001, 0.01]
6: [1e-3, 1e-1], # TOR litter [0.0001, 0.01]
7: [1e-7, 1e-4], # TOR SOM [1e-7, 0.001]
8: [0.01, 0.20], # T factor (Q10) [0.018, 0.08]
9: [7, 25], # PNUE [7, 20]
10: [1e-3, 1.0], # GSI max labile turnover [1e-6, 0.2]
11: [230, 290], # GSI min T (K) [225, 330]
12: [250, 300], # GSI max T (K) [225, 330]
13: [3600, 20000], # GSI min photoperiod (sec) [3600, 36000]
14: [35, 55], # Leaf Mass per Area [20, 60]
15: [20, 100], # initial labile pool size [1, 1000]
16: [20, 100], # initial foliar pool size [1, 1000]
17: [40, 2000], # initial root pool size [1, 1000]
18: [40, 2000], # initial litter pool size [1, 10000]
19: [10000, 40000], # GSI max photoperiod (sec) [3600, 64800]
20: [100, 3000], # GSI min VPD (Pa) [1, 5500]
21: [1000, 5000], # GSI max VPD (Pa) [1, 5500]
22: [1e-3, 0.5], # critical GPP for LAI growth [1e-10, 0.30]
23: [0.96, 1.00], # GSI sens for leaf senescenece [0.96, 1.00]
24: [0.5, 3.0], # GSI growing stage/step [0.50, 1.5]
25: [1.0, 2.0], # Initial GSI [1.0, 2.0]
26: [500, 1500], # DM min lim for grazing (kg.DM.ha-1)
27: [1500, 3000], # DM min lim for cutting (kg.DM.ha-1)
28: [0.25, 0.75], # leaf:stem allocation [0.05, 0.75]
29: [19000, 21000], # initial SOM pool size [5000, 10000] (UK) 19000, 21000
30: [0.015, 0.035], # livestock demand in DM (1-3% of animal weight)
31: [0.01, 0.10], # Post-grazing labile loss (fraction)
32: [0.50, 0.90], # Post-cutting labile loss (fraction)
33: [0.1, 1.0]} # min DM removal for grazing instance to occur (g.C.m-2.w-1)
#### REFINED PRIORS
# mcmc = pd.read_csv("Northwyke/sa_NW_lai_acc2.csv") # RMSE against ungrazed years' LAI
# mcmc = mcmc[mcmc.simulation_0>=0.5]
self.params=[]
for x in range(0,self.nopars) :
self.params.append(spotpy.parameter.Uniform('P%s' %(x+1), pars_lims[x][0], pars_lims[x][1]))
return spotpy.parameter.generate(self.params)
def simulation(self,vector):
pars = np.array(vector, order='F')
if ( (pars[26]>pars[27]) & (pars[12]<=pars[11]) or (pars[21]<=pars[20]) or (pars[19]<=pars[13]) or (pars[29]<pars[15:19].sum()) or (pars[17]>pars[15]+pars[16]+pars[18]) or (pars[7]>pars[6]) ) : return [-np.inf]
else :
lai,gpp,nee,pools,fluxes,rem = DALEC_GRASS.carbon_model_mod.carbon_model(self.start,self.finish,self.deltat,self.lat,self.met,pars,self.nopools,self.nofluxes,self.version_code,self.nodays,self.nopars,self.nomet)
## Collect havest outputs
REMDF = pd.DataFrame(index=range(self.nodays))
REMDF['Csim'] = (rem[1,:]) * 0.021
REMDF['cutsno'] = self.met[7]
REMDF.cutsno[REMDF.cutsno > 0] = 0
REMDF.index = pd.date_range('2016-01-01', periods = self.nodays, freq='7D')
REMDF = REMDF['2017':]
## Collect LAI outputs
LAIDF = pd.DataFrame()
LAIDF['sim'] = lai
LAIDF.index = pd.date_range('2016-01-01', periods = self.nodays, freq='7D')
LAIDF = LAIDF['2017':]
LAIDF['obs'] = self.obs_lai[:-1]
LAIDF = LAIDF.dropna()
## Drop spinup year from results
rem = rem[:,52:]
lai = lai[52:]
gpp = gpp[52:]
pools = pools[52:,:]
fluxes = fluxes[52:,:]
nee = nee[52:]
#### Ecological and Dynamic Constrains
##################################################################################################
### Math
if ( (np.isnan(pools).any()) or (np.isnan(lai).any())
or (np.isnan(gpp).any()) or (np.isnan(fluxes).any())
or (np.any(pools < 0)) or (np.any(fluxes < 0))
or (np.any(lai < 0))
or (np.all(fluxes[:,[0,1,2,3,4,5,6,7,8,9,11,12,13,14,15,17,18,19,20]]==0,axis=0)).any()
### Fluxes
or (np.any(gpp > 25))
or ((gpp*7).sum() < 500*self.noyears )
or ((gpp*7).sum() > 2800*self.noyears)
or (np.any((fluxes[:,12]+fluxes[:,13]+fluxes[:,2]) > 20) )
or (((fluxes[:,12]+fluxes[:,13]+fluxes[:,2])*7).sum() < 500*self.noyears)
or (((fluxes[:,12]+fluxes[:,13]+fluxes[:,2])*7).sum() > 2600*self.noyears)
### Soil C
or (abs(pars[29] - pools[-1,5]) > pars[29]*0.05) ## soil C stable
### Management
or ( (rem[0,:]*21/float(650*0.035) > 70).any() ) # max total LSU_ha_week
or ( int(abs(REMDF.cutsno.sum())) != int(len(REMDF[REMDF.Csim>0])) ) # all cuts in inputs are simulated
) : return [-np.inf]
return [ sqrt(mean_squared_error(LAIDF.obs,LAIDF.sim)) ]
def evaluation(self) : return [0]
def objectivefunction(self,simulation,evaluation) :
objectivefunction = -spotpy.objectivefunctions.mae(evaluation,simulation)
return objectivefunction
"""
> Run the model-data fusion using Seamulated Annealing as the algorithm
"""
results = []
spotpy_setup = abc_dalec()
# # # ### MCMC Metropolis-Hastings
# sampler = spotpy.algorithms.mcmc(spotpy_setup, dbname='Northwyke/mcmc_NW_cut', dbformat='csv', save_sim=True, parallel='mpi')
# results.append(sampler.sample(10000000,nChains=1000))
### Simulated Annealing
sampler = spotpy.algorithms.sa(spotpy_setup, dbname='%s/MDF_outs_%s'%(workingdir,sitename), dbformat='csv', save_sim=True)
results.append(sampler.sample(repetitions=10000000, Tini=90, Ntemp=3000, alpha=0.99)) # tini: Starting temperature | Ntemp: No of trials per T | alpha: T reduction