-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathar1star_lat_replay.py
300 lines (241 loc) · 10.1 KB
/
ar1star_lat_replay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python
# -*- coding: utf-8 -*-
################################################################################
# Copyright (c) 2020. Vincenzo Lomonaco, Gabriele Graffieti, Lorenzo #
# Pellegrini, Davide Maltoni. All rights reserved. #
# See the accompanying LICENSE file for terms. #
# #
# Date: 01-04-2020 #
# Authors: Vincenzo Lomonaco, Gabriele Graffieti, Lorenzo Pellegrini, Davide #
# Maltoni. #
# E-mail: vincenzo.lomonaco@unibo.it #
# Website: vincenzolomonaco.com #
################################################################################
""" Simple AR1* implementation in PyTorch with Latent Replay """
# Python 2-3 compatible
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
from data_loader import CORE50
import copy
import os
import json
from models.mobilenet import MyMobilenetV1
from utils import *
import configparser
import argparse
from pprint import pprint
from torch.utils.tensorboard import SummaryWriter
# --------------------------------- Setup --------------------------------------
# recover exp configuration name
parser = argparse.ArgumentParser(description='Run CL experiments')
parser.add_argument('--name', dest='exp_name', default='DEFAULT',
help='name of the experiment you want to run.')
args = parser.parse_args()
# set cuda device (based on your hardware)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# recover config file for the experiment
config = configparser.ConfigParser()
config.read("params.cfg")
exp_config = config[args.exp_name]
print("Experiment name:", args.exp_name)
pprint(dict(exp_config))
# recover parameters from the cfg file and compute the dependent ones.
exp_name = eval(exp_config['exp_name'])
comment = eval(exp_config['comment'])
use_cuda = eval(exp_config['use_cuda'])
init_lr = eval(exp_config['init_lr'])
inc_lr = eval(exp_config['inc_lr'])
mb_size = eval(exp_config['mb_size'])
init_train_ep = eval(exp_config['init_train_ep'])
inc_train_ep = eval(exp_config['inc_train_ep'])
init_update_rate = eval(exp_config['init_update_rate'])
inc_update_rate = eval(exp_config['inc_update_rate'])
max_r_max = eval(exp_config['max_r_max'])
max_d_max = eval(exp_config['max_d_max'])
inc_step = eval(exp_config['inc_step'])
rm_sz = eval(exp_config['rm_sz'])
momentum = eval(exp_config['momentum'])
l2 = eval(exp_config['l2'])
freeze_below_layer = eval(exp_config['freeze_below_layer'])
latent_layer_num = eval(exp_config['latent_layer_num'])
reg_lambda = eval(exp_config['reg_lambda'])
# setting up log dir for tensorboard
log_dir = 'logs/' + exp_name
writer = SummaryWriter(log_dir)
# Saving params
hyper = json.dumps(dict(exp_config))
writer.add_text("parameters", hyper, 0)
# Other variables init
tot_it_step = 0
rm = None
# Create the dataset object
dataset = CORE50(root='/home/admin/ssd_data/core50', scenario="nicv2_391")
preproc = preprocess_imgs
# Get the fixed test set
test_x, test_y = dataset.get_test_set()
# Model setup
model = MyMobilenetV1(pretrained=True, latent_layer_num=latent_layer_num)
# we replace BN layers with Batch Renormalization layers
replace_bn_with_brn(
model, momentum=init_update_rate, r_d_max_inc_step=inc_step,
max_r_max=max_r_max, max_d_max=max_d_max
)
model.saved_weights = {}
model.past_j = {i:0 for i in range(50)}
model.cur_j = {i:0 for i in range(50)}
if reg_lambda != 0:
# the regularization is based on Synaptic Intelligence as described in the
# paper. ewcData is a list of two elements (best parametes, importance)
# while synData is a dictionary with all the trajectory data needed by SI
ewcData, synData = create_syn_data(model)
# Optimizer setup
optimizer = torch.optim.SGD(
model.parameters(), lr=init_lr, momentum=momentum, weight_decay=l2
)
criterion = torch.nn.CrossEntropyLoss()
# --------------------------------- Training -----------------------------------
# loop over the training incremental batches
for i, train_batch in enumerate(dataset):
if reg_lambda != 0:
init_batch(model, ewcData, synData)
# we freeze the layer below the replay layer since the first batch
freeze_up_to(model, freeze_below_layer, only_conv=False)
if i == 1:
change_brn_pars(
model, momentum=inc_update_rate, r_d_max_inc_step=0,
r_max=max_r_max, d_max=max_d_max)
optimizer = torch.optim.SGD(
model.parameters(), lr=inc_lr, momentum=momentum, weight_decay=l2
)
train_x, train_y = train_batch
train_x = preproc(train_x)
if i == 0:
cur_class = [int(o) for o in set(train_y)]
model.cur_j = examples_per_class(train_y)
else:
cur_class = [int(o) for o in set(train_y).union(set(rm[1]))]
model.cur_j = examples_per_class(list(train_y) + list(rm[1]))
print("----------- batch {0} -------------".format(i))
print("train_x shape: {}, train_y shape: {}"
.format(train_x.shape, train_y.shape))
model.train()
model.lat_features.eval()
reset_weights(model, cur_class)
cur_ep = 0
if i == 0:
(train_x, train_y), it_x_ep = pad_data([train_x, train_y], mb_size)
shuffle_in_unison([train_x, train_y], in_place=True)
model = maybe_cuda(model, use_cuda=use_cuda)
acc = None
ave_loss = 0
train_x = torch.from_numpy(train_x).type(torch.FloatTensor)
train_y = torch.from_numpy(train_y).type(torch.LongTensor)
if i == 0:
train_ep = init_train_ep
else:
train_ep = inc_train_ep
for ep in range(train_ep):
print("training ep: ", ep)
correct_cnt, ave_loss = 0, 0
# computing how many patterns to inject in the latent replay layer
if i > 0:
cur_sz = train_x.size(0) // ((train_x.size(0) + rm_sz) // mb_size)
it_x_ep = train_x.size(0) // cur_sz
n2inject = max(0, mb_size - cur_sz)
else:
n2inject = 0
print("total sz:", train_x.size(0) + rm_sz)
print("n2inject", n2inject)
print("it x ep: ", it_x_ep)
for it in range(it_x_ep):
if reg_lambda !=0:
pre_update(model, synData)
start = it * (mb_size - n2inject)
end = (it + 1) * (mb_size - n2inject)
optimizer.zero_grad()
x_mb = maybe_cuda(train_x[start:end], use_cuda=use_cuda)
if i == 0:
lat_mb_x = None
y_mb = maybe_cuda(train_y[start:end], use_cuda=use_cuda)
else:
lat_mb_x = rm[0][it*n2inject: (it + 1)*n2inject]
lat_mb_y = rm[1][it*n2inject: (it + 1)*n2inject]
y_mb = maybe_cuda(
torch.cat((train_y[start:end], lat_mb_y), 0),
use_cuda=use_cuda)
lat_mb_x = maybe_cuda(lat_mb_x, use_cuda=use_cuda)
# if lat_mb_x is not None, this tensor will be concatenated in
# the forward pass on-the-fly in the latent replay layer
logits, lat_acts = model(
x_mb, latent_input=lat_mb_x, return_lat_acts=True)
# collect latent volumes only for the first ep
# we need to store them to eventually add them into the external
# replay memory
if ep == 0:
lat_acts = lat_acts.cpu().detach()
if it == 0:
cur_acts = copy.deepcopy(lat_acts)
else:
cur_acts = torch.cat((cur_acts, lat_acts), 0)
_, pred_label = torch.max(logits, 1)
correct_cnt += (pred_label == y_mb).sum()
loss = criterion(logits, y_mb)
if reg_lambda !=0:
loss += compute_ewc_loss(model, ewcData, lambd=reg_lambda)
ave_loss += loss.item()
loss.backward()
optimizer.step()
if reg_lambda !=0:
post_update(model, synData)
acc = correct_cnt.item() / \
((it + 1) * y_mb.size(0))
ave_loss /= ((it + 1) * y_mb.size(0))
if it % 10 == 0:
print(
'==>>> it: {}, avg. loss: {:.6f}, '
'running train acc: {:.3f}'
.format(it, ave_loss, acc)
)
# Log scalar values (scalar summary) to TB
tot_it_step +=1
writer.add_scalar('train_loss', ave_loss, tot_it_step)
writer.add_scalar('train_accuracy', acc, tot_it_step)
cur_ep += 1
consolidate_weights(model, cur_class)
if reg_lambda != 0:
update_ewc_data(model, ewcData, synData, 0.001, 1)
# how many patterns to save for next iter
h = min(rm_sz // (i + 1), cur_acts.size(0))
print("h", h)
print("cur_acts sz:", cur_acts.size(0))
idxs_cur = np.random.choice(
cur_acts.size(0), h, replace=False
)
rm_add = [cur_acts[idxs_cur], train_y[idxs_cur]]
print("rm_add size", rm_add[0].size(0))
# replace patterns in random memory
if i == 0:
rm = copy.deepcopy(rm_add)
else:
idxs_2_replace = np.random.choice(
rm[0].size(0), h, replace=False
)
for j, idx in enumerate(idxs_2_replace):
rm[0][idx] = copy.deepcopy(rm_add[0][j])
rm[1][idx] = copy.deepcopy(rm_add[1][j])
set_consolidate_weights(model)
ave_loss, acc, accs = get_accuracy(
model, criterion, mb_size, test_x, test_y, preproc=preproc
)
# Log scalar values (scalar summary) to TB
writer.add_scalar('test_loss', ave_loss, i)
writer.add_scalar('test_accuracy', acc, i)
# update number examples encountered over time
for c, n in model.cur_j.items():
model.past_j[c] += n
print("---------------------------------")
print("Accuracy: ", acc)
print("---------------------------------")
writer.close()