Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Research] Custom Deepseek Routing #1070

Draft
wants to merge 3 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 55 additions & 0 deletions examples/quantization_w4a16/gptj_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer

from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant.base import SmoothQuantModifier
from llmcompressor.transformers import oneshot

# Select model and load it.
MODEL_ID = "EleutherAI/gpt-j-6B"

model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# Select calibration dataset.
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"

# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048

# Configure the quantization algorithm to run.
# * quantize the weights to 4 bit with GPTQ with a group size 128
recipe = [
SmoothQuantModifier(smoothing_strength=0.8),
GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"]),
]

# Apply algorithms.
oneshot(
model=model,
dataset="ultrachat-200k",
splits={"calibration": f"train_sft[:{NUM_CALIBRATION_SAMPLES}]"},
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)

# Confirm generations of the quantized model look sane.
print("\n\n")
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")

# Save to disk compressed.
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
85 changes: 48 additions & 37 deletions examples/quantizing_moe/deepseek_moe_w4a16.py
Original file line number Diff line number Diff line change
@@ -1,29 +1,40 @@
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoTokenizer

from llmcompressor.transformers import oneshot
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
from llmcompressor.transformers.tracing import TraceableDeepseekV2ForCausalLM
from llmcompressor.transformers.tracing.deepseek_v2.configuration_deepseek import (
DeepseekV2Config,
)

# NOTE: transformers 4.48.0 has an import error with DeepSeek.
# Please consider either downgrading your transformers version to a
# previous version or upgrading to a version where this bug is fixed

# select a Mixture of Experts model for quantization
MODEL_ID = "deepseek-ai/DeepSeek-V2.5"
MODEL_ID = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"

# adjust based off number of desired GPUs
# if not enough memory is available, some layers will automatically be offlaoded to cpu
device_map = calculate_offload_device_map(
MODEL_ID,
reserve_for_hessians=True,
num_gpus=2,
num_gpus=1,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)

model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True
# model = AutoModelForCausalLM.from_pretrained(
config = DeepseekV2Config.from_pretrained(MODEL_ID)
config.moe_top_k_activation = True
model = TraceableDeepseekV2ForCausalLM.from_pretrained(
MODEL_ID,
device_map=device_map,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
config=config,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

Expand Down Expand Up @@ -91,35 +102,35 @@ def tokenize(sample):
print("==========================================")


# Run the model on vLLM
try:
from vllm import LLM, SamplingParams

vllm_installed = True
except ImportError:
vllm_installed = False

if vllm_installed:
print("vLLM installed, running using vLLM")
sampling_params = SamplingParams(temperature=0.80, top_p=0.95)
llm = LLM(
model=SAVE_DIR,
tensor_parallel_size=2,
trust_remote_code=True,
max_model_len=1042,
dtype=torch.half,
)
prompts = [
"The capital of France is",
"The president of the US is",
"My name is",
]

outputs = llm.generate(prompts, sampling_params)
print("================= vLLM GENERATION ======================")
for output in outputs:
assert output
prompt = output.prompt
generated_text = output.outputs[0].text
print("PROMPT", prompt)
print("GENERATED TEXT", generated_text)
# # Run the model on vLLM
# try:
# from vllm import LLM, SamplingParams

# vllm_installed = True
# except ImportError:
# vllm_installed = False

# if vllm_installed:
# print("vLLM installed, running using vLLM")
# sampling_params = SamplingParams(temperature=0.80, top_p=0.95)
# llm = LLM(
# model=SAVE_DIR,
# tensor_parallel_size=2,
# trust_remote_code=True,
# max_model_len=1042,
# dtype=torch.half,
# )
# prompts = [
# "The capital of France is",
# "The president of the US is",
# "My name is",
# ]

# outputs = llm.generate(prompts, sampling_params)
# print("================= vLLM GENERATION ======================")
# for output in outputs:
# assert output
# prompt = output.prompt
# generated_text = output.outputs[0].text
# print("PROMPT", prompt)
# print("GENERATED TEXT", generated_text)
4 changes: 4 additions & 0 deletions src/llmcompressor/transformers/tracing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,13 @@
from .mllama import (
MllamaForConditionalGeneration as TraceableMllamaForConditionalGeneration,
)
from .deepseek_v2.modeling_deepseek import (
DeepseekV2ForCausalLM as TraceableDeepseekV2ForCausalLM
)

__all__ = [
"TraceableLlavaForConditionalGeneration",
"TraceableMllamaForConditionalGeneration",
"TraceableMistralForCausalLM",
"TraceableDeepseekV2ForCausalLM",
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
# flake8: noqa
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)

DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class DeepseekV2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DeepSeek-V2.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
vocab_size (`int`, *optional*, defaults to 102400):
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DeepseekV2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
moe_intermediate_size (`int`, *optional*, defaults to 1407):
Dimension of the MoE representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
n_shared_experts (`int`, *optional*, defaults to None):
Number of shared experts, None means dense model.
n_routed_experts (`int`, *optional*, defaults to None):
Number of routed experts, None means dense model.
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
Scaling factor or routed experts.
topk_method (`str`, *optional*, defaults to `gready`):
Topk method used in routed gate.
n_group (`int`, *optional*, defaults to None):
Number of groups for routed experts.
topk_group (`int`, *optional*, defaults to None):
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
num_experts_per_tok (`int`, *optional*, defaults to None):
Number of selected experts, None means dense model.
moe_layer_freq (`int`, *optional*, defaults to 1):
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
first_k_dense_replace (`int`, *optional*, defaults to 0):
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
\--k dense layers--/
norm_topk_prob (`bool`, *optional*, defaults to False):
Whether to normalize the weights of the routed experts.
scoring_func (`str`, *optional*, defaults to 'softmax'):
Method of computing expert weights.
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
Auxiliary loss weight coefficient.
seq_aux = (`bool`, *optional*, defaults to True):
Whether to compute the auxiliary loss for each individual sample.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.

```python
>>> from transformers import DeepseekV2Model, DeepseekV2Config

>>> # Initializing a Deepseek-V2 style configuration
>>> configuration = DeepseekV2Config()

>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "deepseek_v2"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=102400,
hidden_size=4096,
intermediate_size=11008,
moe_intermediate_size = 1407,
num_hidden_layers=30,
num_attention_heads=32,
num_key_value_heads=32,
n_shared_experts = None,
n_routed_experts = None,
ep_size = 1,
routed_scaling_factor = 1.0,
kv_lora_rank = 512,
q_lora_rank = 1536,
qk_rope_head_dim = 64,
v_head_dim = 128,
qk_nope_head_dim = 128,
topk_method = 'gready',
n_group = None,
topk_group = None,
num_experts_per_tok = None,
moe_layer_freq = 1,
first_k_dense_replace = 0,
norm_topk_prob = False,
scoring_func = 'softmax',
aux_loss_alpha = 0.001,
seq_aux = True,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=100000,
eos_token_id=100001,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
# TRACING: add calibration options
moe_top_k_activation=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.moe_intermediate_size = moe_intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.n_shared_experts = n_shared_experts
self.n_routed_experts = n_routed_experts
self.ep_size = ep_size
self.routed_scaling_factor = routed_scaling_factor
self.kv_lora_rank = kv_lora_rank
self.q_lora_rank = q_lora_rank
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.qk_nope_head_dim = qk_nope_head_dim
self.topk_method = topk_method
self.n_group = n_group
self.topk_group = topk_group
self.num_experts_per_tok = num_experts_per_tok
self.moe_layer_freq = moe_layer_freq
self.first_k_dense_replace = first_k_dense_replace
self.norm_topk_prob = norm_topk_prob
self.scoring_func = scoring_func
self.aux_loss_alpha = aux_loss_alpha
self.seq_aux = seq_aux
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.moe_top_k_activation = moe_top_k_activation

super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
Loading
Loading