From 74ac98255fb499dc0b98bb312269783b2e75bf86 Mon Sep 17 00:00:00 2001 From: Kyle Sayers Date: Tue, 14 Jan 2025 15:06:46 -0500 Subject: [PATCH 1/3] modify model definition Signed-off-by: Kyle Sayers --- examples/quantizing_moe/deepseek_moe_w4a16.py | 70 +- .../transformers/tracing/__init__.py | 2 + .../deepseek_v2/configuration_deepseek.py | 206 ++ .../tracing/deepseek_v2/modeling_deepseek.py | 1926 +++++++++++++++++ 4 files changed, 2170 insertions(+), 34 deletions(-) create mode 100644 src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py create mode 100644 src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py diff --git a/examples/quantizing_moe/deepseek_moe_w4a16.py b/examples/quantizing_moe/deepseek_moe_w4a16.py index 55a7021b4..f9f0d37d3 100644 --- a/examples/quantizing_moe/deepseek_moe_w4a16.py +++ b/examples/quantizing_moe/deepseek_moe_w4a16.py @@ -4,13 +4,14 @@ from llmcompressor.transformers import oneshot from llmcompressor.transformers.compression.helpers import calculate_offload_device_map +from llmcompressor.transformers.tracing import TraceableDeepseekV2ForCausalLM # NOTE: transformers 4.48.0 has an import error with DeepSeek. # Please consider either downgrading your transformers version to a # previous version or upgrading to a version where this bug is fixed # select a Mixture of Experts model for quantization -MODEL_ID = "deepseek-ai/DeepSeek-V2.5" +MODEL_ID = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" # adjust based off number of desired GPUs # if not enough memory is available, some layers will automatically be offlaoded to cpu @@ -22,7 +23,8 @@ trust_remote_code=True, ) -model = AutoModelForCausalLM.from_pretrained( +#model = AutoModelForCausalLM.from_pretrained( +model = TraceableDeepseekV2ForCausalLM.from_pretrained( MODEL_ID, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) @@ -91,35 +93,35 @@ def tokenize(sample): print("==========================================") -# Run the model on vLLM -try: - from vllm import LLM, SamplingParams - - vllm_installed = True -except ImportError: - vllm_installed = False - -if vllm_installed: - print("vLLM installed, running using vLLM") - sampling_params = SamplingParams(temperature=0.80, top_p=0.95) - llm = LLM( - model=SAVE_DIR, - tensor_parallel_size=2, - trust_remote_code=True, - max_model_len=1042, - dtype=torch.half, - ) - prompts = [ - "The capital of France is", - "The president of the US is", - "My name is", - ] - - outputs = llm.generate(prompts, sampling_params) - print("================= vLLM GENERATION ======================") - for output in outputs: - assert output - prompt = output.prompt - generated_text = output.outputs[0].text - print("PROMPT", prompt) - print("GENERATED TEXT", generated_text) +# # Run the model on vLLM +# try: +# from vllm import LLM, SamplingParams + +# vllm_installed = True +# except ImportError: +# vllm_installed = False + +# if vllm_installed: +# print("vLLM installed, running using vLLM") +# sampling_params = SamplingParams(temperature=0.80, top_p=0.95) +# llm = LLM( +# model=SAVE_DIR, +# tensor_parallel_size=2, +# trust_remote_code=True, +# max_model_len=1042, +# dtype=torch.half, +# ) +# prompts = [ +# "The capital of France is", +# "The president of the US is", +# "My name is", +# ] + +# outputs = llm.generate(prompts, sampling_params) +# print("================= vLLM GENERATION ======================") +# for output in outputs: +# assert output +# prompt = output.prompt +# generated_text = output.outputs[0].text +# print("PROMPT", prompt) +# print("GENERATED TEXT", generated_text) diff --git a/src/llmcompressor/transformers/tracing/__init__.py b/src/llmcompressor/transformers/tracing/__init__.py index 4baa5864d..e096f41a6 100644 --- a/src/llmcompressor/transformers/tracing/__init__.py +++ b/src/llmcompressor/transformers/tracing/__init__.py @@ -5,9 +5,11 @@ from .mllama import ( MllamaForConditionalGeneration as TraceableMllamaForConditionalGeneration, ) +from .deepseek_v2.modeling_deepseek import DeepseekV2ForCausalLM as TraceableDeepseekV2ForCausalLM __all__ = [ "TraceableLlavaForConditionalGeneration", "TraceableMllamaForConditionalGeneration", "TraceableMistralForCausalLM", + "TraceableDeepseekV2ForCausalLM", ] diff --git a/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py b/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py new file mode 100644 index 000000000..82e0f5d9d --- /dev/null +++ b/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py @@ -0,0 +1,206 @@ +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import logging + +logger = logging.get_logger(__name__) + +DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {} +class DeepseekV2Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the DeepSeek-V2. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 102400): + Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`DeepseekV2Model`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + moe_intermediate_size (`int`, *optional*, defaults to 1407): + Dimension of the MoE representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer decoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer decoder. + n_shared_experts (`int`, *optional*, defaults to None): + Number of shared experts, None means dense model. + n_routed_experts (`int`, *optional*, defaults to None): + Number of routed experts, None means dense model. + routed_scaling_factor (`float`, *optional*, defaults to 1.0): + Scaling factor or routed experts. + topk_method (`str`, *optional*, defaults to `gready`): + Topk method used in routed gate. + n_group (`int`, *optional*, defaults to None): + Number of groups for routed experts. + topk_group (`int`, *optional*, defaults to None): + Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups). + num_experts_per_tok (`int`, *optional*, defaults to None): + Number of selected experts, None means dense model. + moe_layer_freq (`int`, *optional*, defaults to 1): + The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers. + first_k_dense_replace (`int`, *optional*, defaults to 0): + Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head). + \--k dense layers--/ + norm_topk_prob (`bool`, *optional*, defaults to False): + Whether to normalize the weights of the routed experts. + scoring_func (`str`, *optional*, defaults to 'softmax'): + Method of computing expert weights. + aux_loss_alpha (`float`, *optional*, defaults to 0.001): + Auxiliary loss weight coefficient. + seq_aux = (`bool`, *optional*, defaults to True): + Whether to compute the auxiliary loss for each individual sample. + num_key_value_heads (`int`, *optional*): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 1): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2): + End of stream token id. + pretraining_tp (`int`, *optional*, defaults to 1): + Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this + document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is + necessary to ensure exact reproducibility of the pretraining results. Please refer to [this + issue](https://github.com/pytorch/pytorch/issues/76232). + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. + attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): + Whether to use a bias in the query, key, value and output projection layers during self-attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + + ```python + >>> from transformers import DeepseekV2Model, DeepseekV2Config + + >>> # Initializing a Deepseek-V2 style configuration + >>> configuration = DeepseekV2Config() + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "deepseek_v2" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=102400, + hidden_size=4096, + intermediate_size=11008, + moe_intermediate_size = 1407, + num_hidden_layers=30, + num_attention_heads=32, + num_key_value_heads=32, + n_shared_experts = None, + n_routed_experts = None, + ep_size = 1, + routed_scaling_factor = 1.0, + kv_lora_rank = 512, + q_lora_rank = 1536, + qk_rope_head_dim = 64, + v_head_dim = 128, + qk_nope_head_dim = 128, + topk_method = 'gready', + n_group = None, + topk_group = None, + num_experts_per_tok = None, + moe_layer_freq = 1, + first_k_dense_replace = 0, + norm_topk_prob = False, + scoring_func = 'softmax', + aux_loss_alpha = 0.001, + seq_aux = True, + hidden_act="silu", + max_position_embeddings=2048, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=None, + bos_token_id=100000, + eos_token_id=100001, + pretraining_tp=1, + tie_word_embeddings=False, + rope_theta=10000.0, + rope_scaling=None, + attention_bias=False, + attention_dropout=0.0, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.moe_intermediate_size = moe_intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.n_shared_experts = n_shared_experts + self.n_routed_experts = n_routed_experts + self.ep_size = ep_size + self.routed_scaling_factor = routed_scaling_factor + self.kv_lora_rank = kv_lora_rank + self.q_lora_rank = q_lora_rank + self.qk_rope_head_dim = qk_rope_head_dim + self.v_head_dim = v_head_dim + self.qk_nope_head_dim = qk_nope_head_dim + self.topk_method = topk_method + self.n_group = n_group + self.topk_group = topk_group + self.num_experts_per_tok = num_experts_per_tok + self.moe_layer_freq = moe_layer_freq + self.first_k_dense_replace = first_k_dense_replace + self.norm_topk_prob = norm_topk_prob + self.scoring_func = scoring_func + self.aux_loss_alpha = aux_loss_alpha + self.seq_aux = seq_aux + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.pretraining_tp = pretraining_tp + self.use_cache = use_cache + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + self.attention_bias = attention_bias + self.attention_dropout = attention_dropout + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) \ No newline at end of file diff --git a/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py b/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py new file mode 100644 index 000000000..4d31770d2 --- /dev/null +++ b/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py @@ -0,0 +1,1926 @@ +# coding=utf-8 +# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch DeepSeek model.""" +import math +import warnings +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from transformers.activations import ACT2FN +from transformers.cache_utils import Cache, DynamicCache +from transformers.modeling_attn_mask_utils import ( + AttentionMaskConverter, + _prepare_4d_attention_mask, + _prepare_4d_causal_attention_mask, +) +from transformers.modeling_outputs import ( + BaseModelOutputWithPast, + CausalLMOutputWithPast, + SequenceClassifierOutputWithPast, +) +from transformers.modeling_utils import PreTrainedModel +from transformers.pytorch_utils import ( + ALL_LAYERNORM_LAYERS, + is_torch_greater_or_equal_than_1_13, +) +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from transformers.utils.import_utils import is_torch_fx_available +from .configuration_deepseek import DeepseekV2Config +import torch.distributed as dist +import numpy as np + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + +# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. +# It means that the function will not be traced through and simply appear as a node in the graph. +if is_torch_fx_available(): + if not is_torch_greater_or_equal_than_1_13: + import torch.fx + + _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "DeepseekV2Config" + + +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad( + torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) + ) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +class DeepseekV2RMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + DeepseekV2RMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm) + + +class DeepseekV2RotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / ( + self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, + device=self.inv_freq.device, + dtype=torch.get_default_dtype(), + ) + self.max_seq_len_cached = None + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + + freqs = torch.outer(t, self.inv_freq.to(t.device)) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2 +class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding): + """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + t = t / self.scaling_factor + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2 +class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding): + """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) + - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / ( + base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Inverse dim formula to find dim based on number of rotations +def yarn_find_correction_dim( + num_rotations, dim, base=10000, max_position_embeddings=2048 +): + return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / ( + 2 * math.log(base) + ) + + +# Find dim range bounds based on rotations +def yarn_find_correction_range( + low_rot, high_rot, dim, base=10000, max_position_embeddings=2048 +): + low = math.floor( + yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings) + ) + high = math.ceil( + yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings) + ) + return max(low, 0), min(high, dim - 1) # Clamp values just in case + + +def yarn_get_mscale(scale=1, mscale=1): + if scale <= 1: + return 1.0 + return 0.1 * mscale * math.log(scale) + 1.0 + + +def yarn_linear_ramp_mask(min, max, dim): + if min == max: + max += 0.001 # Prevent singularity + + linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) + ramp_func = torch.clamp(linear_func, 0, 1) + return ramp_func + + +class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding): + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + original_max_position_embeddings=4096, + beta_fast=32, + beta_slow=1, + mscale=1, + mscale_all_dim=0, + ): + self.scaling_factor = scaling_factor + self.original_max_position_embeddings = original_max_position_embeddings + self.beta_fast = beta_fast + self.beta_slow = beta_slow + self.mscale = mscale + self.mscale_all_dim = mscale_all_dim + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + dim = self.dim + + freq_extra = 1.0 / ( + self.base + ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) + ) + freq_inter = 1.0 / ( + self.scaling_factor + * self.base + ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) + ) + + low, high = yarn_find_correction_range( + self.beta_fast, + self.beta_slow, + dim, + self.base, + self.original_max_position_embeddings, + ) + inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to( + device=device, dtype=torch.float32 + ) + inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(seq_len, device=device, dtype=torch.float32) + + freqs = torch.outer(t, inv_freq) + + _mscale = float( + yarn_get_mscale(self.scaling_factor, self.mscale) + / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim) + ) + + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer( + "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False + ) + self.register_buffer( + "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False + ) + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + + b, h, s, d = q.shape + q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + b, h, s, d = k.shape + k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +class DeepseekV2MLP(nn.Module): + def __init__(self, config, hidden_size=None, intermediate_size=None): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size if hidden_size is None else hidden_size + self.intermediate_size = ( + config.intermediate_size if intermediate_size is None else intermediate_size + ) + + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + + +class MoEGate(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.top_k = config.num_experts_per_tok + self.n_routed_experts = config.n_routed_experts + self.routed_scaling_factor = config.routed_scaling_factor + self.scoring_func = config.scoring_func + self.alpha = config.aux_loss_alpha + self.seq_aux = config.seq_aux + self.topk_method = config.topk_method + self.n_group = config.n_group + self.topk_group = config.topk_group + + # topk selection algorithm + self.norm_topk_prob = config.norm_topk_prob + self.gating_dim = config.hidden_size + self.weight = nn.Parameter( + torch.empty((self.n_routed_experts, self.gating_dim)) + ) + self.reset_parameters() + + def reset_parameters(self) -> None: + import torch.nn.init as init + + init.kaiming_uniform_(self.weight, a=math.sqrt(5)) + + def forward(self, hidden_states): + bsz, seq_len, h = hidden_states.shape + ### compute gating score + hidden_states = hidden_states.view(-1, h) + logits = F.linear( + hidden_states.type(torch.float32), self.weight.type(torch.float32), None + ) + if self.scoring_func == "softmax": + scores = logits.softmax(dim=-1, dtype=torch.float32) + else: + raise NotImplementedError( + f"insupportable scoring function for MoE gating: {self.scoring_func}" + ) + + ### select top-k experts + if self.topk_method == "greedy": + topk_weight, topk_idx = torch.topk( + scores, k=self.top_k, dim=-1, sorted=False + ) + elif self.topk_method == "group_limited_greedy": + group_scores = ( + scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values + ) # [n, n_group] + group_idx = torch.topk( + group_scores, k=self.topk_group, dim=-1, sorted=False + )[ + 1 + ] # [n, top_k_group] + group_mask = torch.zeros_like(group_scores) # [n, n_group] + group_mask.scatter_(1, group_idx, 1) # [n, n_group] + score_mask = ( + group_mask.unsqueeze(-1) + .expand( + bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group + ) + .reshape(bsz * seq_len, -1) + ) # [n, e] + tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e] + topk_weight, topk_idx = torch.topk( + tmp_scores, k=self.top_k, dim=-1, sorted=False + ) + + ### norm gate to sum 1 + if self.top_k > 1 and self.norm_topk_prob: + denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 + topk_weight = topk_weight / denominator + else: + topk_weight = topk_weight * self.routed_scaling_factor + ### expert-level computation auxiliary loss + # TRACING: + #if self.training and self.alpha > 0.0: + if True: + scores_for_aux = scores + aux_topk = self.top_k + # always compute aux loss based on the naive greedy topk method + topk_idx_for_aux_loss = topk_idx.view(bsz, -1) + if self.seq_aux: + scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) + ce = torch.zeros( + bsz, self.n_routed_experts, device=hidden_states.device + ) + ce.scatter_add_( + 1, + topk_idx_for_aux_loss, + torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device), + ).div_(seq_len * aux_topk / self.n_routed_experts) + aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum( + dim=1 + ).mean() * self.alpha + else: + mask_ce = F.one_hot( + topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts + ) + ce = mask_ce.float().mean(0) + Pi = scores_for_aux.mean(0) + fi = ce * self.n_routed_experts + aux_loss = (Pi * fi).sum() * self.alpha + else: + aux_loss = None + return topk_idx, topk_weight, aux_loss + + +class AddAuxiliaryLoss(torch.autograd.Function): + """ + The trick function of adding auxiliary (aux) loss, + which includes the gradient of the aux loss during backpropagation. + """ + + @staticmethod + def forward(ctx, x, loss): + assert loss.numel() == 1 + ctx.dtype = loss.dtype + ctx.required_aux_loss = loss.requires_grad + return x + + @staticmethod + def backward(ctx, grad_output): + grad_loss = None + if ctx.required_aux_loss: + grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device) + return grad_output, grad_loss + + +class DeepseekV2MoE(nn.Module): + """ + A mixed expert module containing shared experts. + """ + + def __init__(self, config): + super().__init__() + self.config = config + self.num_experts_per_tok = config.num_experts_per_tok + + if hasattr(config, "ep_size") and config.ep_size > 1: + assert config.ep_size == dist.get_world_size() + self.ep_size = config.ep_size + self.experts_per_rank = config.n_routed_experts // config.ep_size + self.ep_rank = dist.get_rank() + self.experts = nn.ModuleList( + [ + ( + DeepseekV2MLP( + config, intermediate_size=config.moe_intermediate_size + ) + if i >= self.ep_rank * self.experts_per_rank + and i < (self.ep_rank + 1) * self.experts_per_rank + else None + ) + for i in range(config.n_routed_experts) + ] + ) + else: + self.ep_size = 1 + self.experts_per_rank = config.n_routed_experts + self.ep_rank = 0 + self.experts = nn.ModuleList( + [ + DeepseekV2MLP( + config, intermediate_size=config.moe_intermediate_size + ) + for i in range(config.n_routed_experts) + ] + ) + self.gate = MoEGate(config) + if config.n_shared_experts is not None: + intermediate_size = config.moe_intermediate_size * config.n_shared_experts + self.shared_experts = DeepseekV2MLP( + config=config, intermediate_size=intermediate_size + ) + + def forward(self, hidden_states): + identity = hidden_states + orig_shape = hidden_states.shape + topk_idx, topk_weight, aux_loss = self.gate(hidden_states) + hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) + flat_topk_idx = topk_idx.view(-1) + # TRACING: + #if self.training: + if True: + hidden_states = hidden_states.repeat_interleave( + self.num_experts_per_tok, dim=0 + ) + y = torch.empty_like(hidden_states) + for i, expert in enumerate(self.experts): + y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) + y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) + y = y.to(hidden_states.dtype).view(*orig_shape) + y = AddAuxiliaryLoss.apply(y, aux_loss) + else: + y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape) + if self.config.n_shared_experts is not None: + y = y + self.shared_experts(identity) + return y + + @torch.no_grad() + def moe_infer(self, x, topk_ids, topk_weight): + cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) + cnts.scatter_(1, topk_ids, 1) + tokens_per_expert = cnts.sum(dim=0) + idxs = topk_ids.view(-1).argsort() + sorted_tokens = x[idxs // topk_ids.shape[1]] + sorted_tokens_shape = sorted_tokens.shape + if self.ep_size > 1: + tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1) + tokens_per_expert_group = tokens_per_expert.new_empty( + tokens_per_expert.shape[0] + ) + dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert) + output_splits = ( + tokens_per_expert_group.view(self.ep_size, -1) + .sum(1) + .cpu() + .numpy() + .tolist() + ) + gathered_tokens = sorted_tokens.new_empty( + tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1] + ) + input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist() + dist.all_to_all( + list(gathered_tokens.split(output_splits)), + list(sorted_tokens.split(input_split_sizes)), + ) + tokens_per_expert_post_gather = tokens_per_expert_group.view( + self.ep_size, self.experts_per_rank + ).sum(dim=0) + gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32) + s = 0 + for i, k in enumerate(tokens_per_expert_group.cpu().numpy()): + gatherd_idxs[s : s + k] = i % self.experts_per_rank + s += k + gatherd_idxs = gatherd_idxs.argsort() + sorted_tokens = gathered_tokens[gatherd_idxs] + tokens_per_expert = tokens_per_expert_post_gather + tokens_per_expert = tokens_per_expert.cpu().numpy() + + outputs = [] + start_idx = 0 + for i, num_tokens in enumerate(tokens_per_expert): + end_idx = start_idx + num_tokens + if num_tokens == 0: + continue + expert = self.experts[i + self.ep_rank * self.experts_per_rank] + tokens_for_this_expert = sorted_tokens[start_idx:end_idx] + expert_out = expert(tokens_for_this_expert) + outputs.append(expert_out) + start_idx = end_idx + + outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) + if self.ep_size > 1: + new_x = torch.empty_like(outs) + new_x[gatherd_idxs] = outs + gathered_tokens = new_x.new_empty(*sorted_tokens_shape) + dist.all_to_all( + list(gathered_tokens.split(input_split_sizes)), + list(new_x.split(output_splits)), + ) + outs = gathered_tokens + + new_x = torch.empty_like(outs) + new_x[idxs] = outs + final_out = ( + new_x.view(*topk_ids.shape, -1) + .type(topk_weight.dtype) + .mul_(topk_weight.unsqueeze(dim=-1)) + .sum(dim=1) + .type(new_x.dtype) + ) + return final_out + + +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand( + batch, num_key_value_heads, n_rep, slen, head_dim + ) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2 +class DeepseekV2Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " + "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.q_lora_rank = config.q_lora_rank + self.qk_rope_head_dim = config.qk_rope_head_dim + self.kv_lora_rank = config.kv_lora_rank + self.v_head_dim = config.v_head_dim + self.qk_nope_head_dim = config.qk_nope_head_dim + self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim + + self.is_causal = True + + if self.q_lora_rank is None: + self.q_proj = nn.Linear( + self.hidden_size, self.num_heads * self.q_head_dim, bias=False + ) + else: + self.q_a_proj = nn.Linear( + self.hidden_size, config.q_lora_rank, bias=config.attention_bias + ) + self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank) + self.q_b_proj = nn.Linear( + config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False + ) + + self.kv_a_proj_with_mqa = nn.Linear( + self.hidden_size, + config.kv_lora_rank + config.qk_rope_head_dim, + bias=config.attention_bias, + ) + self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank) + self.kv_b_proj = nn.Linear( + config.kv_lora_rank, + self.num_heads + * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), + bias=False, + ) + + self.o_proj = nn.Linear( + self.num_heads * self.v_head_dim, + self.hidden_size, + bias=config.attention_bias, + ) + self._init_rope() + + self.softmax_scale = self.q_head_dim ** (-0.5) + if self.config.rope_scaling is not None: + mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0) + scaling_factor = self.config.rope_scaling["factor"] + if mscale_all_dim: + mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) + self.softmax_scale = self.softmax_scale * mscale * mscale + + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = DeepseekV2RotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "dynamic": + self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "yarn": + kwargs = { + key: self.config.rope_scaling[key] + for key in [ + "original_max_position_embeddings", + "beta_fast", + "beta_slow", + "mscale", + "mscale_all_dim", + ] + if key in self.config.rope_scaling + } + self.rotary_emb = DeepseekV2YarnRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + **kwargs, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return ( + tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim) + .transpose(1, 2) + .contiguous() + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + q = self.q_proj(hidden_states) + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 + ) + + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 + ) + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) + kv = ( + self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) + .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) + .transpose(1, 2) + ) + + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 + ) + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + query_states[:, :, :, : self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + key_states[:, :, :, : self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim :] = k_pe + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs + ) + + attn_weights = ( + torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale + ) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + assert attention_mask is not None + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax( + attn_weights, dim=-1, dtype=torch.float32 + ).to(query_states.dtype) + attn_weights = nn.functional.dropout( + attn_weights, p=self.attention_dropout, training=self.training + ) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2 +class DeepseekV2FlashAttention2(DeepseekV2Attention): + """ + DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + # DeepseekV2FlashAttention2 attention does not support output_attentions + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + q = self.q_proj(hidden_states) + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 + ) + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dim x hidden_dim + # therefore we just need to keep the original shape + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 + ) + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) + kv = ( + self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) + .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) + .transpose(1, 2) + ) + + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 + ) + kv_seq_len = value_states.shape[-2] + + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + query_states[:, :, :, : self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + key_states[:, :, :, : self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim :] = k_pe + + if self.q_head_dim != self.v_head_dim: + value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim]) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs + ) + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache + # to be able to avoid many of these transpose/reshape/view. + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + dropout_rate = self.attention_dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (DeepseekV2RMSNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + # Handle the case where the model is quantized + if hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + elif torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + else: + target_dtype = ( + self.q_proj.weight.dtype + if self.q_lora_rank is None + else self.q_a_proj.weight.dtype + ) + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = self._flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + dropout=dropout_rate, + softmax_scale=self.softmax_scale, + ) + if self.q_head_dim != self.v_head_dim: + attn_output = attn_output[:, :, :, : self.v_head_dim] + + attn_output = attn_output.reshape( + bsz, q_len, self.num_heads * self.v_head_dim + ).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, + query_states, + key_states, + value_states, + attention_mask, + query_length, + dropout=0.0, + softmax_scale=None, + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`int`, *optional*): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + ( + query_states, + key_states, + value_states, + indices_q, + cu_seq_lens, + max_seq_lens, + ) = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input( + attn_output_unpad, indices_q, batch_size, query_length + ) + else: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + return attn_output + + def _upad_input( + self, query_layer, key_layer, value_layer, attention_mask, query_length + ): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), + indices_k, + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), + indices_k, + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), + indices_k, + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( + query_layer, attention_mask + ) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +ATTENTION_CLASSES = { + "eager": DeepseekV2Attention, + "flash_attention_2": DeepseekV2FlashAttention2, +} + + +class DeepseekV2DecoderLayer(nn.Module): + def __init__(self, config: DeepseekV2Config, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = ATTENTION_CLASSES[config._attn_implementation]( + config=config, layer_idx=layer_idx + ) + + self.mlp = ( + DeepseekV2MoE(config) + if ( + config.n_routed_experts is not None + and layer_idx >= config.first_k_dense_replace + and layer_idx % config.moe_layer_freq == 0 + ) + else DeepseekV2MLP(config) + ) + self.input_layernorm = DeepseekV2RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + self.post_attention_layernorm = DeepseekV2RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + **kwargs, + ) -> Tuple[ + torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] + ]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + **kwargs, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +DeepseekV2_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`DeepseekV2Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.", + DeepseekV2_START_DOCSTRING, +) +class DeepseekV2PreTrainedModel(PreTrainedModel): + config_class = DeepseekV2Config + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["DeepseekV2DecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_cache_class = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +DeepseekV2_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.", + DeepseekV2_START_DOCSTRING, +) +class DeepseekV2Model(DeepseekV2PreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`] + + Args: + config: DeepseekV2Config + """ + + def __init__(self, config: DeepseekV2Config): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding( + config.vocab_size, config.hidden_size, self.padding_idx + ) + self.layers = nn.ModuleList( + [ + DeepseekV2DecoderLayer(config, layer_idx) + for layer_idx in range(config.num_hidden_layers) + ] + ) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = ( + output_attentions + if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time" + ) + elif input_ids is not None: + batch_size, seq_length = input_ids.shape[:2] + elif inputs_embeds is not None: + batch_size, seq_length = inputs_embeds.shape[:2] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers." + ) + use_cache = False + + past_key_values_length = 0 + if use_cache: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_length) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, + seq_length + past_key_values_length, + dtype=torch.long, + device=device, + ) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if self._use_flash_attention_2: + # 2d mask is passed through the layers + attention_mask = ( + attention_mask + if (attention_mask is not None and 0 in attention_mask) + else None + ) + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + ) + + # embed positions + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = None + if use_cache: + next_cache = ( + next_decoder_cache.to_legacy_cache() + if use_legacy_cache + else next_decoder_cache + ) + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] + if v is not None + ) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = DeepseekV2Model(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING) + @replace_return_docstrings( + output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC + ) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM + + >>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + output_attentions = ( + output_attentions + if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + inputs_embeds=None, + **kwargs, + ): + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as + # input) + if ( + attention_mask is not None + and attention_mask.shape[1] > input_ids.shape[1] + ): + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple( + past_state.index_select(0, beam_idx.to(past_state.device)) + for past_state in layer_past + ), + ) + return reordered_past + + +@add_start_docstrings( + """ + The DeepseekV2 Model transformer with a sequence classification head on top (linear layer). + + [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + DeepseekV2_START_DOCSTRING, +) +class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = DeepseekV2Model(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError( + "Cannot handle batch sizes > 1 if no padding token is defined." + ) + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + sequence_lengths = ( + torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + ).to(logits.device) + else: + sequence_lengths = -1 + + pooled_logits = logits[ + torch.arange(batch_size, device=logits.device), sequence_lengths + ] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and ( + labels.dtype == torch.long or labels.dtype == torch.int + ): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct( + pooled_logits.view(-1, self.num_labels), labels.view(-1) + ) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) \ No newline at end of file From 2d4791c15da3767b656c3b4ee31cdc7cbde1ab2d Mon Sep 17 00:00:00 2001 From: Kyle Sayers Date: Tue, 14 Jan 2025 20:53:52 +0000 Subject: [PATCH 2/3] add moe_top_k_activation Signed-off-by: Kyle Sayers --- examples/quantizing_moe/deepseek_moe_w4a16.py | 11 +++++++++-- .../tracing/deepseek_v2/configuration_deepseek.py | 3 +++ .../tracing/deepseek_v2/modeling_deepseek.py | 8 +++++--- 3 files changed, 17 insertions(+), 5 deletions(-) diff --git a/examples/quantizing_moe/deepseek_moe_w4a16.py b/examples/quantizing_moe/deepseek_moe_w4a16.py index f9f0d37d3..31e08fb81 100644 --- a/examples/quantizing_moe/deepseek_moe_w4a16.py +++ b/examples/quantizing_moe/deepseek_moe_w4a16.py @@ -1,3 +1,4 @@ +from llmcompressor.transformers.tracing.deepseek_v2.configuration_deepseek import DeepseekV2Config import torch from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer @@ -18,14 +19,20 @@ device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True, - num_gpus=2, + num_gpus=1, torch_dtype=torch.bfloat16, trust_remote_code=True, ) #model = AutoModelForCausalLM.from_pretrained( +config = DeepseekV2Config.from_pretrained(MODEL_ID) +config.moe_top_k_activation = True model = TraceableDeepseekV2ForCausalLM.from_pretrained( - MODEL_ID, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True + MODEL_ID, + device_map=device_map, + torch_dtype=torch.bfloat16, + trust_remote_code=True, + config=config ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) diff --git a/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py b/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py index 82e0f5d9d..833d86ba5 100644 --- a/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py +++ b/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py @@ -154,6 +154,8 @@ def __init__( rope_scaling=None, attention_bias=False, attention_dropout=0.0, + # TRACING: add calibration options + moe_top_k_activation=True, **kwargs, ): self.vocab_size = vocab_size @@ -196,6 +198,7 @@ def __init__( self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout + self.moe_top_k_activation = moe_top_k_activation super().__init__( pad_token_id=pad_token_id, diff --git a/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py b/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py index 4d31770d2..d79f6c2de 100644 --- a/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py +++ b/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py @@ -466,7 +466,7 @@ def forward(self, hidden_states): else: topk_weight = topk_weight * self.routed_scaling_factor ### expert-level computation auxiliary loss - # TRACING: + # TRACING: This only affects the backwards pass, but needed to avoid typing issues on `aux_loss` #if self.training and self.alpha > 0.0: if True: scores_for_aux = scores @@ -573,7 +573,7 @@ def forward(self, hidden_states): topk_idx, topk_weight, aux_loss = self.gate(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) flat_topk_idx = topk_idx.view(-1) - # TRACING: + # TRACING: pass activations to all experts #if self.training: if True: hidden_states = hidden_states.repeat_interleave( @@ -585,7 +585,9 @@ def forward(self, hidden_states): y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) y = y.to(hidden_states.dtype).view(*orig_shape) y = AddAuxiliaryLoss.apply(y, aux_loss) - else: + # TRACING: Give option to calibrate with top_k experts, as if in inference time + #else: + if self.config.moe_top_k_activation: y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape) if self.config.n_shared_experts is not None: y = y + self.shared_experts(identity) From a28f2317a1ade51798c359ed311be669adc01ae1 Mon Sep 17 00:00:00 2001 From: Kyle Sayers Date: Wed, 15 Jan 2025 16:59:56 +0000 Subject: [PATCH 3/3] apply style Signed-off-by: Kyle Sayers --- examples/quantization_w4a16/gptj_example.py | 55 +++++++++++++++++++ examples/quantizing_moe/deepseek_moe_w4a16.py | 10 ++-- .../transformers/tracing/__init__.py | 4 +- .../deepseek_v2/configuration_deepseek.py | 3 +- .../tracing/deepseek_v2/modeling_deepseek.py | 3 +- 5 files changed, 68 insertions(+), 7 deletions(-) create mode 100644 examples/quantization_w4a16/gptj_example.py diff --git a/examples/quantization_w4a16/gptj_example.py b/examples/quantization_w4a16/gptj_example.py new file mode 100644 index 000000000..b0fb59af8 --- /dev/null +++ b/examples/quantization_w4a16/gptj_example.py @@ -0,0 +1,55 @@ +from datasets import load_dataset +from transformers import AutoModelForCausalLM, AutoTokenizer + +from llmcompressor.modifiers.quantization import GPTQModifier +from llmcompressor.modifiers.smoothquant.base import SmoothQuantModifier +from llmcompressor.transformers import oneshot + +# Select model and load it. +MODEL_ID = "EleutherAI/gpt-j-6B" + +model = AutoModelForCausalLM.from_pretrained( + MODEL_ID, + device_map="auto", + torch_dtype="auto", +) +tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) + +# Select calibration dataset. +DATASET_ID = "HuggingFaceH4/ultrachat_200k" +DATASET_SPLIT = "train_sft" + +# Select number of samples. 512 samples is a good place to start. +# Increasing the number of samples can improve accuracy. +NUM_CALIBRATION_SAMPLES = 512 +MAX_SEQUENCE_LENGTH = 2048 + +# Configure the quantization algorithm to run. +# * quantize the weights to 4 bit with GPTQ with a group size 128 +recipe = [ + SmoothQuantModifier(smoothing_strength=0.8), + GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"]), +] + +# Apply algorithms. +oneshot( + model=model, + dataset="ultrachat-200k", + splits={"calibration": f"train_sft[:{NUM_CALIBRATION_SAMPLES}]"}, + recipe=recipe, + max_seq_length=MAX_SEQUENCE_LENGTH, + num_calibration_samples=NUM_CALIBRATION_SAMPLES, +) + +# Confirm generations of the quantized model look sane. +print("\n\n") +print("========== SAMPLE GENERATION ==============") +input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") +output = model.generate(input_ids, max_new_tokens=100) +print(tokenizer.decode(output[0])) +print("==========================================\n\n") + +# Save to disk compressed. +SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128" +model.save_pretrained(SAVE_DIR, save_compressed=True) +tokenizer.save_pretrained(SAVE_DIR) diff --git a/examples/quantizing_moe/deepseek_moe_w4a16.py b/examples/quantizing_moe/deepseek_moe_w4a16.py index 31e08fb81..8169c0541 100644 --- a/examples/quantizing_moe/deepseek_moe_w4a16.py +++ b/examples/quantizing_moe/deepseek_moe_w4a16.py @@ -1,11 +1,13 @@ -from llmcompressor.transformers.tracing.deepseek_v2.configuration_deepseek import DeepseekV2Config import torch from datasets import load_dataset -from transformers import AutoModelForCausalLM, AutoTokenizer +from transformers import AutoTokenizer from llmcompressor.transformers import oneshot from llmcompressor.transformers.compression.helpers import calculate_offload_device_map from llmcompressor.transformers.tracing import TraceableDeepseekV2ForCausalLM +from llmcompressor.transformers.tracing.deepseek_v2.configuration_deepseek import ( + DeepseekV2Config, +) # NOTE: transformers 4.48.0 has an import error with DeepSeek. # Please consider either downgrading your transformers version to a @@ -24,7 +26,7 @@ trust_remote_code=True, ) -#model = AutoModelForCausalLM.from_pretrained( +# model = AutoModelForCausalLM.from_pretrained( config = DeepseekV2Config.from_pretrained(MODEL_ID) config.moe_top_k_activation = True model = TraceableDeepseekV2ForCausalLM.from_pretrained( @@ -32,7 +34,7 @@ device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True, - config=config + config=config, ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) diff --git a/src/llmcompressor/transformers/tracing/__init__.py b/src/llmcompressor/transformers/tracing/__init__.py index e096f41a6..9728e9939 100644 --- a/src/llmcompressor/transformers/tracing/__init__.py +++ b/src/llmcompressor/transformers/tracing/__init__.py @@ -5,7 +5,9 @@ from .mllama import ( MllamaForConditionalGeneration as TraceableMllamaForConditionalGeneration, ) -from .deepseek_v2.modeling_deepseek import DeepseekV2ForCausalLM as TraceableDeepseekV2ForCausalLM +from .deepseek_v2.modeling_deepseek import ( + DeepseekV2ForCausalLM as TraceableDeepseekV2ForCausalLM +) __all__ = [ "TraceableLlavaForConditionalGeneration", diff --git a/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py b/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py index 833d86ba5..555ce2417 100644 --- a/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py +++ b/src/llmcompressor/transformers/tracing/deepseek_v2/configuration_deepseek.py @@ -1,3 +1,4 @@ +# flake8: noqa from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging @@ -206,4 +207,4 @@ def __init__( eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, - ) \ No newline at end of file + ) diff --git a/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py b/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py index d79f6c2de..d6272cb79 100644 --- a/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py +++ b/src/llmcompressor/transformers/tracing/deepseek_v2/modeling_deepseek.py @@ -1,3 +1,4 @@ +# flake8: noqa # coding=utf-8 # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. # @@ -1925,4 +1926,4 @@ def forward( past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, - ) \ No newline at end of file + )