Skip to content

Commit

Permalink
modify model definition
Browse files Browse the repository at this point in the history
Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
  • Loading branch information
kylesayrs committed Jan 14, 2025
1 parent fe31829 commit 74ac982
Show file tree
Hide file tree
Showing 4 changed files with 2,170 additions and 34 deletions.
70 changes: 36 additions & 34 deletions examples/quantizing_moe/deepseek_moe_w4a16.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,14 @@

from llmcompressor.transformers import oneshot
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
from llmcompressor.transformers.tracing import TraceableDeepseekV2ForCausalLM

# NOTE: transformers 4.48.0 has an import error with DeepSeek.
# Please consider either downgrading your transformers version to a
# previous version or upgrading to a version where this bug is fixed

# select a Mixture of Experts model for quantization
MODEL_ID = "deepseek-ai/DeepSeek-V2.5"
MODEL_ID = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"

# adjust based off number of desired GPUs
# if not enough memory is available, some layers will automatically be offlaoded to cpu
Expand All @@ -22,7 +23,8 @@
trust_remote_code=True,
)

model = AutoModelForCausalLM.from_pretrained(
#model = AutoModelForCausalLM.from_pretrained(
model = TraceableDeepseekV2ForCausalLM.from_pretrained(
MODEL_ID, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
Expand Down Expand Up @@ -91,35 +93,35 @@ def tokenize(sample):
print("==========================================")


# Run the model on vLLM
try:
from vllm import LLM, SamplingParams

vllm_installed = True
except ImportError:
vllm_installed = False

if vllm_installed:
print("vLLM installed, running using vLLM")
sampling_params = SamplingParams(temperature=0.80, top_p=0.95)
llm = LLM(
model=SAVE_DIR,
tensor_parallel_size=2,
trust_remote_code=True,
max_model_len=1042,
dtype=torch.half,
)
prompts = [
"The capital of France is",
"The president of the US is",
"My name is",
]

outputs = llm.generate(prompts, sampling_params)
print("================= vLLM GENERATION ======================")
for output in outputs:
assert output
prompt = output.prompt
generated_text = output.outputs[0].text
print("PROMPT", prompt)
print("GENERATED TEXT", generated_text)
# # Run the model on vLLM
# try:
# from vllm import LLM, SamplingParams

# vllm_installed = True
# except ImportError:
# vllm_installed = False

# if vllm_installed:
# print("vLLM installed, running using vLLM")
# sampling_params = SamplingParams(temperature=0.80, top_p=0.95)
# llm = LLM(
# model=SAVE_DIR,
# tensor_parallel_size=2,
# trust_remote_code=True,
# max_model_len=1042,
# dtype=torch.half,
# )
# prompts = [
# "The capital of France is",
# "The president of the US is",
# "My name is",
# ]

# outputs = llm.generate(prompts, sampling_params)
# print("================= vLLM GENERATION ======================")
# for output in outputs:
# assert output
# prompt = output.prompt
# generated_text = output.outputs[0].text
# print("PROMPT", prompt)
# print("GENERATED TEXT", generated_text)
2 changes: 2 additions & 0 deletions src/llmcompressor/transformers/tracing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,11 @@
from .mllama import (
MllamaForConditionalGeneration as TraceableMllamaForConditionalGeneration,
)
from .deepseek_v2.modeling_deepseek import DeepseekV2ForCausalLM as TraceableDeepseekV2ForCausalLM

__all__ = [
"TraceableLlavaForConditionalGeneration",
"TraceableMllamaForConditionalGeneration",
"TraceableMistralForCausalLM",
"TraceableDeepseekV2ForCausalLM",
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)

DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class DeepseekV2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DeepSeek-V2.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 102400):
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DeepseekV2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
moe_intermediate_size (`int`, *optional*, defaults to 1407):
Dimension of the MoE representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
n_shared_experts (`int`, *optional*, defaults to None):
Number of shared experts, None means dense model.
n_routed_experts (`int`, *optional*, defaults to None):
Number of routed experts, None means dense model.
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
Scaling factor or routed experts.
topk_method (`str`, *optional*, defaults to `gready`):
Topk method used in routed gate.
n_group (`int`, *optional*, defaults to None):
Number of groups for routed experts.
topk_group (`int`, *optional*, defaults to None):
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
num_experts_per_tok (`int`, *optional*, defaults to None):
Number of selected experts, None means dense model.
moe_layer_freq (`int`, *optional*, defaults to 1):
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
first_k_dense_replace (`int`, *optional*, defaults to 0):
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
\--k dense layers--/
norm_topk_prob (`bool`, *optional*, defaults to False):
Whether to normalize the weights of the routed experts.
scoring_func (`str`, *optional*, defaults to 'softmax'):
Method of computing expert weights.
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
Auxiliary loss weight coefficient.
seq_aux = (`bool`, *optional*, defaults to True):
Whether to compute the auxiliary loss for each individual sample.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import DeepseekV2Model, DeepseekV2Config
>>> # Initializing a Deepseek-V2 style configuration
>>> configuration = DeepseekV2Config()
>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "deepseek_v2"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=102400,
hidden_size=4096,
intermediate_size=11008,
moe_intermediate_size = 1407,
num_hidden_layers=30,
num_attention_heads=32,
num_key_value_heads=32,
n_shared_experts = None,
n_routed_experts = None,
ep_size = 1,
routed_scaling_factor = 1.0,
kv_lora_rank = 512,
q_lora_rank = 1536,
qk_rope_head_dim = 64,
v_head_dim = 128,
qk_nope_head_dim = 128,
topk_method = 'gready',
n_group = None,
topk_group = None,
num_experts_per_tok = None,
moe_layer_freq = 1,
first_k_dense_replace = 0,
norm_topk_prob = False,
scoring_func = 'softmax',
aux_loss_alpha = 0.001,
seq_aux = True,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=100000,
eos_token_id=100001,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.moe_intermediate_size = moe_intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.n_shared_experts = n_shared_experts
self.n_routed_experts = n_routed_experts
self.ep_size = ep_size
self.routed_scaling_factor = routed_scaling_factor
self.kv_lora_rank = kv_lora_rank
self.q_lora_rank = q_lora_rank
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.qk_nope_head_dim = qk_nope_head_dim
self.topk_method = topk_method
self.n_group = n_group
self.topk_group = topk_group
self.num_experts_per_tok = num_experts_per_tok
self.moe_layer_freq = moe_layer_freq
self.first_k_dense_replace = first_k_dense_replace
self.norm_topk_prob = norm_topk_prob
self.scoring_func = scoring_func
self.aux_loss_alpha = aux_loss_alpha
self.seq_aux = seq_aux
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout

super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
Loading

0 comments on commit 74ac982

Please sign in to comment.