-
Notifications
You must be signed in to change notification settings - Fork 77
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into composability-v2
- Loading branch information
Showing
8 changed files
with
788 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
from datasets import load_dataset | ||
from transformers import AutoModelForCausalLM, AutoProcessor | ||
|
||
from llmcompressor.modifiers.quantization import GPTQModifier | ||
from llmcompressor.transformers import oneshot | ||
from llmcompressor.transformers.utils.data_collator import phi3_vision_data_collator | ||
|
||
# Load model. | ||
model_id = "microsoft/Phi-3-vision-128k-instruct" | ||
model = AutoModelForCausalLM.from_pretrained( | ||
model_id, | ||
device_map="auto", | ||
torch_dtype="auto", | ||
trust_remote_code=True, | ||
_attn_implementation="eager", | ||
) | ||
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | ||
processor.chat_template = processor.tokenizer.chat_template | ||
|
||
# Oneshot arguments | ||
DATASET_ID = "lmms-lab/flickr30k" | ||
DATASET_SPLIT = "test[:512]" | ||
NUM_CALIBRATION_SAMPLES = 512 | ||
MAX_SEQUENCE_LENGTH = 2048 | ||
|
||
# Load dataset and preprocess. | ||
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) | ||
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) | ||
|
||
|
||
# Apply chat template | ||
def preprocess(example): | ||
messages = [{"role": "user", "content": "<|image_1|>\nWhat does the image show?"}] | ||
return { | ||
"text": processor.apply_chat_template( | ||
messages, | ||
add_generation_prompt=True, | ||
), | ||
"images": example["image"], | ||
} | ||
|
||
|
||
ds = ds.map(preprocess) | ||
|
||
|
||
# # Tokenize inputs. | ||
def tokenize(sample): | ||
return processor( | ||
text=sample["text"], | ||
images=sample["images"], | ||
padding=False, | ||
max_length=MAX_SEQUENCE_LENGTH, | ||
truncation=True, | ||
) | ||
|
||
|
||
# long data lengths produced by the phi3_vision processor | ||
# can lead to integer overflows when mapping, avoid with writer_batch_size | ||
ds = ds.map(tokenize, writer_batch_size=1, remove_columns=ds.column_names) | ||
|
||
|
||
# Recipe | ||
recipe = [ | ||
GPTQModifier( | ||
targets="Linear", | ||
scheme="W4A16", | ||
sequential_targets=["Phi3DecoderLayer"], | ||
ignore=["lm_head", "re:model.vision_embed_tokens.*"], | ||
), | ||
] | ||
|
||
# Perform oneshot | ||
oneshot( | ||
model=model, | ||
dataset=ds, | ||
recipe=recipe, | ||
max_seq_length=MAX_SEQUENCE_LENGTH, | ||
num_calibration_samples=NUM_CALIBRATION_SAMPLES, | ||
trust_remote_code_model=True, | ||
data_collator=phi3_vision_data_collator, | ||
) | ||
|
||
# Confirm generations of the quantized model look sane. | ||
print("========== SAMPLE GENERATION ==============") | ||
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda") | ||
output = model.generate(input_ids, max_new_tokens=20) | ||
print(processor.decode(output[0])) | ||
print("==========================================") | ||
|
||
# Save to disk compressed. | ||
SAVE_DIR = model_id.split("/")[1] + "-W4A16-G128" | ||
model.save_pretrained(SAVE_DIR, save_compressed=True) | ||
processor.save_pretrained(SAVE_DIR) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
import base64 | ||
from io import BytesIO | ||
|
||
from datasets import load_dataset | ||
from qwen_vl_utils import process_vision_info | ||
from transformers import AutoProcessor | ||
|
||
from llmcompressor.modifiers.quantization import GPTQModifier | ||
from llmcompressor.transformers import oneshot | ||
from llmcompressor.transformers.tracing import TraceableQwen2VLForConditionalGeneration | ||
from llmcompressor.transformers.utils.data_collator import qwen2_vl_data_collator | ||
|
||
# Load model. | ||
model_id = "Qwen/Qwen2-VL-2B-Instruct" | ||
model = TraceableQwen2VLForConditionalGeneration.from_pretrained( | ||
model_id, | ||
device_map="auto", | ||
torch_dtype="auto", | ||
) | ||
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | ||
|
||
# Oneshot arguments | ||
DATASET_ID = "lmms-lab/flickr30k" | ||
DATASET_SPLIT = {"calibration": "test[:512]"} | ||
NUM_CALIBRATION_SAMPLES = 512 | ||
MAX_SEQUENCE_LENGTH = 2048 | ||
|
||
# Load dataset and preprocess. | ||
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) | ||
ds = ds.shuffle(seed=42) | ||
|
||
|
||
# Apply chat template and tokenize inputs. | ||
def preprocess_and_tokenize(example): | ||
# preprocess | ||
buffered = BytesIO() | ||
example["image"].save(buffered, format="PNG") | ||
encoded_image = base64.b64encode(buffered.getvalue()) | ||
encoded_image_text = encoded_image.decode("utf-8") | ||
base64_qwen = f"data:image;base64,{encoded_image_text}" | ||
messages = [ | ||
{ | ||
"role": "user", | ||
"content": [ | ||
{"type": "image", "image": base64_qwen}, | ||
{"type": "text", "text": "What does the image show?"}, | ||
], | ||
} | ||
] | ||
text = processor.apply_chat_template( | ||
messages, tokenize=False, add_generation_prompt=True | ||
) | ||
image_inputs, video_inputs = process_vision_info(messages) | ||
|
||
# tokenize | ||
return processor( | ||
text=[text], | ||
images=image_inputs, | ||
videos=video_inputs, | ||
padding=False, | ||
max_length=MAX_SEQUENCE_LENGTH, | ||
truncation=True, | ||
) | ||
|
||
|
||
ds = ds.map(preprocess_and_tokenize, remove_columns=ds["calibration"].column_names) | ||
|
||
# Recipe | ||
recipe = [ | ||
GPTQModifier( | ||
targets="Linear", | ||
scheme="W4A16", | ||
sequential_targets=["Qwen2VLDecoderLayer"], | ||
ignore=["lm_head", "re:visual.*"], | ||
), | ||
] | ||
|
||
# Perform oneshot | ||
oneshot( | ||
model=model, | ||
tokenizer=model_id, | ||
dataset=ds, | ||
recipe=recipe, | ||
max_seq_length=MAX_SEQUENCE_LENGTH, | ||
num_calibration_samples=NUM_CALIBRATION_SAMPLES, | ||
trust_remote_code_model=True, | ||
data_collator=qwen2_vl_data_collator, | ||
) | ||
|
||
# Confirm generations of the quantized model look sane. | ||
print("========== SAMPLE GENERATION ==============") | ||
messages = [ | ||
{ | ||
"role": "user", | ||
"content": [ | ||
{ | ||
"type": "image", | ||
"image": "http://images.cocodataset.org/train2017/000000231895.jpg", | ||
}, | ||
{"type": "text", "text": "Please describe the animal in this image\n"}, | ||
], | ||
} | ||
] | ||
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | ||
image_inputs, video_inputs = process_vision_info(messages) | ||
inputs = processor( | ||
text=[prompt], | ||
images=image_inputs, | ||
videos=video_inputs, | ||
padding=False, | ||
max_length=MAX_SEQUENCE_LENGTH, | ||
truncation=True, | ||
return_tensors="pt", | ||
).to("cuda") | ||
output = model.generate(**inputs, max_new_tokens=100) | ||
print(processor.decode(output[0], skip_special_tokens=True)) | ||
print("==========================================") | ||
|
||
|
||
# Save to disk compressed. | ||
SAVE_DIR = model_id.split("/")[1] + "-W4A16-G128" | ||
model.save_pretrained(SAVE_DIR, save_compressed=True) | ||
processor.save_pretrained(SAVE_DIR) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.