-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_vr_encoder.py
240 lines (189 loc) · 9.06 KB
/
train_vr_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import torch
from torch.optim import Adam
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from VR_Encoder.dataloader.vrr_vg_dataset import VrRVG_train_dataset
from VR_Encoder.model.vtranse import VTransE
from VR_Encoder.model.concat import Concat
from utils.utils import set_seed, mkdir, load_config_file
from utils.logger import setup_logger
from omegaconf import OmegaConf
DATA_CONFIG_PATH = "VR_Encoder/configs/data_config.yaml"
TRAINER_CONFIG_PATH = "VR_Encoder/configs/train_config.yaml"
MODEL_CONFIG_PATH = "VR_Encoder/configs/model_config.yaml"
def save_checkpoint(config, epoch, model, optimizer):
'''
Checkpointing. Saves model and optimizer state_dict() and current epoch and global training steps.
'''
checkpoint_path = os.path.join(
config.saved_checkpoints, f'checkpoint_{epoch}.pt')
save_num = 0
while (save_num < 10):
try:
if config.n_gpu > 1:
torch.save({
'epoch': epoch,
'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}, checkpoint_path)
else:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}, checkpoint_path)
logger.info("Save checkpoint to {}".format(checkpoint_path))
break
except:
save_num += 1
if save_num == 10:
logger.info("Failed to save checkpoint after 10 trails.")
return
def train(config, train_dataset, model):
'''
Trains the model.
'''
config.train_batch_size = config.per_gpu_train_batch_size * \
max(1, config.n_gpu)
# creating val set from train dataset and dataloaders
train_size = int(config.training_split_ratio*len(train_dataset))
val_size = len(train_dataset)-train_size
train_dataset, val_dataset = random_split(
train_dataset, [train_size, val_size])
train_dataloader = DataLoader(train_dataset, batch_size=4,
shuffle=True, num_workers=0)
val_dataloader = DataLoader(
val_dataset, batch_size=4, shuffle=True, num_workers=0)
# total training iterations
t_total = len(train_dataloader) * config.num_train_epochs
criterion = torch.nn.CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr=config.optimizer.params.lr,
eps=config.optimizer.params.eps, weight_decay=config.optimizer.params.weight_decay)
scheduler = ReduceLROnPlateau(
optimizer, mode='max', factor=0.5, patience=3, verbose=True)
if config.n_gpu > 1:
model = torch.nn.DataParallel(model)
model = model.to(torch.device(config.device))
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", config.num_train_epochs)
logger.info(" Number of GPUs = %d", config.n_gpu)
logger.info(" Batch size per GPU = %d", config.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel) = %d",
config.train_batch_size)
logger.info(" Total optimization steps = %d", t_total)
max_val_acc = 0
epoch_val_loss_min = 1000
val_acc_for_min_loss = 0
for epoch in range(int(config.num_train_epochs)):
epoch_train_loss, epoch_val_loss = 0.0, 0.0
# train for the epoch
model.train()
for step, sample_batched in enumerate(train_dataloader):
model.zero_grad()
subj_sp = sample_batched["sub_bnd_box"].to(
torch.device(config.device))
obj_sp = sample_batched["obj_bnd_box"].to(
torch.device(config.device))
subj_cls = sample_batched["sub_class_scores"].to(
torch.device(config.device))
obj_cls = sample_batched["obj_class_scores"].to(
torch.device(config.device))
sub_feat = sample_batched["sub_roi_features"].to(
torch.device(config.device))
obj_feat = sample_batched["obj_roi_features"].to(
torch.device(config.device))
labels = sample_batched["predicate"].to(
torch.device(config.device))
rela_score, _ = model(
subj_sp, subj_cls, sub_feat, obj_sp, obj_cls, obj_feat)
loss = criterion(rela_score, labels)
if config.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
loss.backward()
optimizer.step()
epoch_train_loss += loss.item()
# eval after the epoch
with torch.no_grad():
model.eval()
num_correct, num_samples = 0, 0
for step, sample_batched in enumerate(val_dataloader):
subj_sp = sample_batched["sub_bnd_box"].to(
torch.device(config.device))
obj_sp = sample_batched["obj_bnd_box"].to(
torch.device(config.device))
subj_cls = sample_batched["sub_class_scores"].to(
torch.device(config.device))
obj_cls = sample_batched["obj_class_scores"].to(
torch.device(config.device))
sub_feat = sample_batched["sub_roi_features"].to(
torch.device(config.device))
obj_feat = sample_batched["obj_roi_features"].to(
torch.device(config.device))
labels = sample_batched["predicate"].to(
torch.device(config.device))
rela_score, _ = model(
subj_sp, subj_cls, sub_feat, obj_sp, obj_cls, obj_feat)
max_index = rela_score.argmax(dim=1)
num_correct += (max_index == labels).sum()
num_samples += labels.size(0)
# seeing val loss
loss = criterion(rela_score, labels)
if config.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
epoch_val_loss += loss.item()
val_acc = (num_correct/num_samples)*100
max_val_acc = max(val_acc, max_val_acc)
# logger.info(f"Epoch {epoch}:Got {num_correct} / {num_samples} correct with val accuracy: {val_acc}")
scheduler.step(val_acc)
epoch_train_loss = epoch_train_loss / len(train_dataloader)
epoch_val_loss = epoch_val_loss / len(val_dataloader)
logger.info(
f"Epoch {epoch} | Train Loss={epoch_train_loss} | Val Loss={epoch_val_loss} | Val acc. {val_acc}")
if epoch_val_loss < epoch_val_loss_min:
logger.info("Epoch Val loss decreased({:.6f} --> {:.6f}).Saving model ...".format(
epoch_val_loss_min, epoch_val_loss))
save_checkpoint(config, epoch, model, optimizer)
epoch_val_loss_min = epoch_val_loss
val_acc_for_min_loss = val_acc
return epoch_val_loss_min, val_acc_for_min_loss
def main():
data_config = load_config_file(DATA_CONFIG_PATH)
train_config = load_config_file(TRAINER_CONFIG_PATH)
model_config = load_config_file(MODEL_CONFIG_PATH)
# merging data and train configs to be given to train()
config = OmegaConf.merge(train_config, data_config)
global logger
# creating directories for saving checkpoints and logs
mkdir(path=config.saved_checkpoints)
mkdir(path=config.logs)
logger = setup_logger(config.logs, config.logs, 0,
filename="training_logs.txt")
config.device = "cuda" if torch.cuda.is_available() else "cpu"
config.n_gpu = torch.cuda.device_count() # config.n_gpu
set_seed(seed=42, n_gpu=config.n_gpu)
# creating model
if model_config.model_name == "VTransE":
model = VTransE(index_sp=model_config.index_sp,
index_cls=model_config.index_cls,
num_pred=model_config.num_pred,
output_size=model_config.output_size,
input_size=model_config.input_size)
elif model_config.model_name == "Concat":
model = Concat()
else:
logger.info(f"{model_config.model_name} model not supported")
# getting dataset for training
logger.info(f"Initializing dataset ...")
train_dataset = VrRVG_train_dataset(xml_file_path=data_config.xml_file_path,
npy_file_path=data_config.npy_file_path,
saved_vtranse_input=data_config.saved_vtranse_input,
saved_dir=data_config.saved_dir,
train_predicates_path=data_config.train_predicates_path)
# Now training
val_loss, val_acc = train(config, train_dataset, model)
logger.info(f"Training done: val_loss = {val_loss}, val_acc = {val_acc}")
if __name__ == "__main__":
main()