-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecoder.py
136 lines (124 loc) · 5.04 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import torch.nn as nn
from token_embedding import TokenEmbedding
from positional_embedding import PositionalEmbedding
from multi_head_attention import MultiHeadAttention
from resnet import ResNet
from layer_norm import LayerNorm
from token_unembedding import TokenUnembedding
class DecoderTransformer(nn.Module):
"""
DecoderTransformer is a module that implements the decoder part of a Transformer model.
Attributes:
-----------
max_sequence_length : int
The maximum length of the input sequences.
layer_decoder : int
The number of decoder layers.
num_heads : int
The number of attention heads.
embedding_dim : int
The dimension of the embedding.
mlp_dim : int
The dimension of the feedforward network.
vocabulary_size : int
The size of the vocabulary.
Methods:
--------
forward(x: torch.Tensor) -> torch.Tensor:
Performs a forward pass through the decoder Transformer model.
"""
def __init__(self, max_sequence_length: int, layer_decoder: int, num_heads: int,
embedding_dim: int, mlp_dim: int, vocabulary_size: int) -> None:
"""
Initialises the DecoderTransformer module.
Parameters:
-----------
max_sequence_length : int
The maximum length of the input sequences.
layer_decoder : int
The number of decoder layers.
num_heads : int
The number of attention heads.
embedding_dim : int
The dimension of the embedding.
mlp_dim : int
The dimension of the feedforward network.
vocabulary_size : int
The size of the vocabulary.
"""
super().__init__()
self.max_sequence_length = max_sequence_length
self.layer_decoder = layer_decoder
self.num_heads = num_heads
self.embedding_dim = embedding_dim
self.mlp_dim = mlp_dim
self.vocabulary_size = vocabulary_size
# create layers
self.token_embedding = TokenEmbedding(self.vocabulary_size, self.embedding_dim)
self.positional_embedding = PositionalEmbedding(self.max_sequence_length, self.embedding_dim)
self.decoder_layers = nn.ModuleList()
# decoder network
for i in range(self.layer_decoder):
# layer normalisation
layer_norm = LayerNorm(embedding_dim)
self.decoder_layers.add_module(f"decoder_layer_norm0_{i}", layer_norm)
# residual attention
multi_head_attention = MultiHeadAttention(num_heads, embedding_dim, embedding_dim, embedding_dim)
resnet_attention = ResNet(multi_head_attention)
self.decoder_layers.add_module(f"decoder_attention_{i}", resnet_attention)
# layer normalisation
layer_norm = LayerNorm(embedding_dim)
self.decoder_layers.add_module(f"decoder_layer_norm1_{i}", layer_norm)
# multi-layer perceptron
mlp = nn.Sequential(
nn.Linear(embedding_dim, mlp_dim),
nn.GELU(),
nn.Linear(mlp_dim, embedding_dim)
)
resnet_mlp = ResNet(mlp)
self.decoder_layers.add_module(f"decoder_mlp_{i}", resnet_mlp)
self.final_layer_norm = LayerNorm(embedding_dim)
self.token_unembedding = TokenUnembedding(self.vocabulary_size, self.embedding_dim)
self.register_buffer("mask", torch.tril(torch.ones(self.max_sequence_length, self.max_sequence_length))
.view(1, self.max_sequence_length, self.max_sequence_length))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the DecoderTransformer module.
Performs a forward pass through the decoder Transformer model.
Parameters:
-----------
x : torch.Tensor
The input tensor for the decoder.
Returns:
--------
torch.Tensor
The output tensor after processing through the Transformer decoder.
"""
# max_sequence_length per batch
lx = x.size()[1]
x = self.token_embedding(x) + self.positional_embedding(lx)[None, :, :]
for name, module in self.decoder_layers.named_children():
if "attention" in name:
x = module(x, x, self.mask.masked_fill(self.mask==0, float("-inf")))
else:
x = module(x)
x = self.final_layer_norm(x)
probs = self.token_unembedding(x)
return probs
if __name__ == "__main__":
# parameters
batch_size = 16
vocabulary_size = 1000
max_sequence_length = 100
num_heads = 4
layer_decoder = 3
embedding_dim = 32
mlp_dim = 64
# artificial tokens sequences
x = torch.randint(0, vocabulary_size, (batch_size, max_sequence_length))
# model
transformer = DecoderTransformer(max_sequence_length, layer_decoder, num_heads,
embedding_dim, mlp_dim, vocabulary_size)
output = transformer(x)
# (batch_size, len(x), vocabulary_size)