-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathtest_pooling.py
138 lines (119 loc) · 3.03 KB
/
test_pooling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import pytest
import torch
import trajnetbaselines
NAN = float('nan')
def test_simple_grid():
pool = trajnetbaselines.lstm.Pooling(n=2, pool_size=4, blur_size=3)
obs = torch.Tensor([
[0.0, 0.0],
[-1.0, -1.0],
])
occupancies = pool.occupancies(obs).numpy().tolist()
assert occupancies == [[
1, 0,
0, 0,
], [
0, 0,
0, 1,
]]
def test_front_grid():
pool = trajnetbaselines.lstm.Pooling(n=2, pool_size=4, blur_size=0, front=True)
obs2 = torch.Tensor([
[0.0, 0.0],
[-1, 1],
])
obs1 = torch.Tensor([
[-1.0, 0.0],
[-1, 1],
])
occupancies = pool.front_occupancies(obs2, obs1).numpy().tolist()
assert occupancies == [[
0, 0,
0, 0,
], [
0, 0,
1, 0,
]]
def test_simple_grid_directional():
pool = trajnetbaselines.lstm.Pooling(n=2, pool_size=4, type_='directional')
obs1 = torch.Tensor([
[0.0, 0.0],
[-1.0, -1.0],
])
obs2 = torch.Tensor([
[0.1, 0.1],
[-1.1, -1.1],
])
occupancies = pool.directional(obs1, obs2).numpy().tolist()
assert occupancies == pytest.approx(np.array([[
-0.1, 0, 0, 0,
-0.1, 0, 0, 0,
], [
0, 0, 0, 0.1,
0, 0, 0, 0.1,
]]), abs=0.01)
def test_simple_grid_midpoint():
"""Testing a midpoint between grid cells.
Using a large pool size as a every data point has to go into a grid
cell first. Therefore, data can never be exactly between two cells.
"""
pool = trajnetbaselines.lstm.Pooling(n=2, pool_size=100, blur_size=99)
obs = torch.Tensor([
[0.0, 0.0],
[-1.0, 0.0],
])
occupancies = pool.occupancies(obs).numpy()
assert occupancies == pytest.approx(np.array([[
0.5, 0.5,
0.0, 0,
], [
0, 0.0,
0.5, 0.5,
]]), abs=0.01)
def test_nan():
pool = trajnetbaselines.lstm.Pooling(n=2)
obs = torch.Tensor([
[0.0, 0.0],
[NAN, NAN],
])
occupancies = pool.occupancies(obs).numpy().tolist()
assert occupancies == [[
0, 0,
0, 0,
], [
0, 0,
0, 0,
]]
def test_embedding_shape():
pool = trajnetbaselines.lstm.Pooling(n=2, hidden_dim=128)
obs = torch.Tensor([
[0.0, 0.0],
[-0.2, -0.2],
])
embedding = pool(None, None, obs)
assert embedding.size(0) == 2
assert embedding.size(1) == 128
def test_hiddenstatemlp_rel_pos():
positions = torch.Tensor([
[0.0, 0.0],
[1.0, 1.0],
])
rel = trajnetbaselines.lstm.pooling.HiddenStateMLPPooling.rel_obs(positions)
assert rel.numpy().tolist() == [[
[0.0, 0.0],
[1.0, 1.0],
], [
[-1.0, -1.0],
[0.0, 0.0],
]]
def test_hiddenstatemlp():
positions = torch.Tensor([
[0.0, 0.0],
[1.0, 1.0],
[2.0, 2.0],
])
hidden = torch.zeros(3, 128)
pool = trajnetbaselines.lstm.pooling.HiddenStateMLPPooling()
result = pool(hidden, None, positions)
test_front_grid()