-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsentiment.py
87 lines (77 loc) · 3.08 KB
/
sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import re
import tweepy
from tweepy import OAuthHandler
from textblob import TextBlob
import keys
class TSentiment(object):
'''
Generic Twitter Class for sentiment analysis.
'''
def __init__(self, keyword):
'''
Class constructor or initialization method.
'''
# keys and tokens from the Twitter Dev Console
consumer_key = keys.keys['consumerKey']
consumer_secret = keys.keys['consumerSecret']
access_token = keys.keys['accessToken']
access_token_secret = keys.keys['accessSecret']
self.topic = keyword
# attempt authentication
try:
# create OAuthHandler object
self.auth = OAuthHandler(consumer_key, consumer_secret)
# set access token and secret
self.auth.set_access_token(access_token, access_token_secret)
# create tweepy API object to fetch tweets
self.api = tweepy.API(self.auth)
except:
print("Error: Authentication Failed")
def clean_tweet(self, tweet):
'''
Utility function to clean tweet text by removing links, special characters
using simple regex statements.
'''
return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", tweet).split())
def get_tweet_sentiment(self, tweet):
'''
Utility function to classify sentiment of passed tweet
using textblob's sentiment method
'''
# create TextBlob object of passed tweet text
analysis = TextBlob(self.clean_tweet(tweet))
# set sentiment
if analysis.sentiment.polarity > 0:
return 'positive'
elif analysis.sentiment.polarity == 0:
return 'neutral'
else:
return 'negative'
def get_tweets(self, count=10, sinceTime=None, untilTime=None):
'''
Main function to fetch tweets and parse them.
'''
# empty list to store parsed tweets
tweets = []
try:
# call twitter api to fetch tweets
if sinceTime == None or untilTime == None:
fetched_tweets = self.api.search(q = self.topic, count = count)
else:
fetched_tweets = self.api.search(q = self.topic, count = count, since = sinceTime, until = untilTime)
# parsing tweets one by one
for tweet in fetched_tweets:
# empty dictionary to store required params of a tweet
parsed_tweet = (tweet.text, tweet.created_at.strftime("%m/%d/%Y"), self.get_tweet_sentiment(tweet.text))
# appending parsed tweet to tweets list
if tweet.retweet_count > 0:
# if tweet has retweets, ensure that it is appended only once
if parsed_tweet not in tweets:
tweets.append(parsed_tweet)
else:
tweets.append(parsed_tweet)
# return parsed tweets
return tweets
except tweepy.TweepError as e:
# print error (if any)
print("Error : " + str(e))