-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathfine_tune_last_layers.py
45 lines (30 loc) · 1.25 KB
/
fine_tune_last_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
from keras import applications
from keras.models import load_model
from keras.models import Sequential
from keras.layers import Dense, Flatten, Dropout
from keras import optimizers
def main():
x_train=np.load('train_data/x_train.npy')
x_cv=np.load('train_data/x_cv.npy')
y_train=np.load('train_data/y_train.npy')
y_cv=np.load('train_data/y_cv.npy')
# load VGG16
vgg_model=applications.VGG16(weights='imagenet', include_top=False, input_shape=(64,64,3))
model_aug=Sequential()
model_aug.add(vgg_model)
top_model=Sequential()
top_model.add(Flatten(input_shape=(2, 2, 512)))
#model_aug.add(Dropout(0.3))
top_model.add(Dense(64, activation='relu'))
top_model.add(Dense(1, activation='sigmoid'))
top_model.load_weights('top_model_full_data_custom_lr_weights.h5')
model_aug.add(top_model)
for layer in model_aug.layers[0].layers[:17]:
layer.trainable=False
model_aug.compile(loss='binary_crossentropy', optimizer=optimizers.Adam(lr=1e-6), metrics=['accuracy'])
print(model_aug.summary())
model_aug.fit(x_train, y_train, epochs=35, batch_size=32, validation_data=(x_cv, y_cv), verbose=1)
model_aug.save_weights('fine_tuned_model_adam_weights.h5')
if __name__=='__main__':
main()