-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetect.py
76 lines (59 loc) · 2.34 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from ultralytics import YOLO
import cv2
import math
# Start webcam
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
# Model
# model = YOLO(r'M:/mask/detect/train/weights/best.pt')
model = YOLO(r'M:/mask/detect/violence_train/weights/best.pt')
# model = YOLO(r'M:/mask/yolo-Weights/yolov8n.pt')
# Object classes
classNames = ["non_violence", "violence"]
# classNames = ["weapon"]
# Initialize accuracy counters
total_correct = 0
total_predictions = 0
while True:
success, img = cap.read()
results = model(img, stream=True)
# Coordinates
for r in results:
boxes = r.boxes
for box in boxes:
# Bounding box
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) # Convert to int values
# Confidence
confidence = math.ceil((box.conf[0] * 100)) / 100
print("Confidence --->", confidence)
# Class name
cls = int(box.cls[0])
print("Class name -->", classNames[cls])
# Object details
org = [x1, y1]
font = cv2.FONT_HERSHEY_SIMPLEX
fontScale = 1
thickness = 2
# Set the rectangle color based on class label
if classNames[cls] == "violence" and confidence>0.60 :
color = (0, 0, 255) # Red for masked person
# total_correct += 1 # Increment correct count for masked person
cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
cv2.putText(img, classNames[cls]+str(confidence), org, font, fontScale, color, thickness)
# else:
# color = (255, 255, 0) # Blue for unmasked person
# cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
# cv2.putText(img, classNames[cls], org, font, fontScale, color, thickness)
total_predictions += 1 # Increment total predictions count
# cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
# cv2.putText(img, classNames[cls], org, font, fontScale, color, thickness)
accuracy = (total_correct / total_predictions) * 100 if total_predictions > 0 else 0
print("Accuracy ---> {:.2f}%".format(accuracy))
# Calculate accuracy
cv2.imshow('Webcam', img)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()