forked from MILVLG/bottom-up-attention.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
encoders_extract_features.py
350 lines (296 loc) · 12.6 KB
/
encoders_extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import time
import argparse
import os
import sys
import torch
import cv2
import numpy as np
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.data import build_detection_test_loader, build_detection_train_loader
from detectron2.config import get_cfg
from detectron2.engine import DefaultTrainer, default_setup, launch
from detectron2.evaluation import COCOEvaluator, verify_results
from detectron2.structures import Instances
from detectron2.layers.nms import batched_nms
from detectron2.structures import Boxes, Instances
from soco_device import DeviceCheck
from frcnn_ext_models import add_config
from frcnn_ext_models.bua.layers.nms import nms
from tqdm import tqdm
from typing import List, Generator, Sequence
import logging
logging.getLogger("fvcore.common.checkpoint").setLevel(logging.ERROR)
logging.getLogger("detectron2.engine.defaults").setLevel(logging.ERROR)
PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]])
TEST_SCALES = (600,)
TEST_MAX_SIZE = 1000
class Pack(dict):
def __getattr__(self, name):
return self[name]
def clone_dict(self, x):
for k, v in list(x.items()):
self[k] = v
def add(self, **kwargs):
for k, v in list(kwargs.items()):
self[k] = v
def copy(self):
pack = Pack()
for k, v in list(self.items()):
if type(v) is list:
pack[k] = list(v)
else:
pack[k] = v
return pack
def chunks(l: Sequence, n: int = 5) -> Generator[Sequence, None, None]:
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
def load_vocab_file(filename):
objects = []
with open(filename) as f:
for i in f.readlines():
objects.append(i.strip())
id_objects_map = {i: v for i, v in enumerate(objects)}
return id_objects_map
def switch_extract_mode(mode):
if mode == 'roi_feats':
switch_cmd = ['MODEL.BUA.EXTRACTOR.MODE', 1]
elif mode == 'bboxes':
switch_cmd = ['MODEL.BUA.EXTRACTOR.MODE', 2]
elif mode == 'bbox_feats':
switch_cmd = ['MODEL.BUA.EXTRACTOR.MODE', 3, 'MODEL.PROPOSAL_GENERATOR.NAME', 'PrecomputedProposals']
else:
print('Wrong extract mode! ')
exit()
return switch_cmd
def set_min_max_boxes(min_max_boxes):
if min_max_boxes == 'min_max_default':
return []
try:
min_boxes = int(min_max_boxes.split(',')[0])
max_boxes = int(min_max_boxes.split(',')[1])
except:
print('Illegal min-max boxes setting, using config default. ')
return []
cmd = ['MODEL.BUA.EXTRACTOR.MIN_BOXES', min_boxes,
'MODEL.BUA.EXTRACTOR.MAX_BOXES', max_boxes]
return cmd
def set_cuda_device():
device_name, device_ids = DeviceCheck().get_device(n_gpu=1)
device_name = '{}:{}'.format(device_name, device_ids[0]) if len(device_ids) == 1 else device_name
cmd = ['MODEL.DEVICE', device_name]
return cmd
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_config(args, cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(switch_extract_mode(args.extract_mode))
cfg.merge_from_list(set_min_max_boxes(args.min_max_boxes))
cfg.merge_from_list(set_cuda_device())
cfg.freeze()
default_setup(cfg, args)
return cfg
def get_image_blob(im, pixel_means):
"""Converts an image into a network input.
Arguments:
im (ndarray): a color image
Returns:
blob (ndarray): a data blob holding an image pyramid
im_scale_factors (list): list of image scales (relative to im) used
in the image pyramid
"""
pixel_means = np.array([[pixel_means]])
dataset_dict = {}
im_orig = im.astype(np.float32, copy=True)
im_orig -= pixel_means
im_shape = im_orig.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
for target_size in TEST_SCALES:
im_scale = float(target_size) / float(im_size_min)
# Prevent the biggest axis from being more than MAX_SIZE
if np.round(im_scale * im_size_max) > TEST_MAX_SIZE:
im_scale = float(TEST_MAX_SIZE) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
dataset_dict["image"] = torch.from_numpy(im).permute(2, 0, 1)
dataset_dict["im_scale"] = im_scale
return dataset_dict
def normalize_box_feats(boxes, im_h, im_w):
'''
input: 10 * 1d torch array of len 4 (xmin, ymin, xmax, ymax); img height; img width
output: np array with shape (num_boxes, 8)
8: (xmin, ymin, xmax, ymax, xcent, ycent, wbox, hbox) normalized to -1,1
'''
# print(f'img width:{im_w} img height:{im_h}')
# print(f'box 0: {boxes[0]}')
# print(f'boxes: {boxes}')
assert (torch.all(boxes[:, 0] <= im_w) and torch.all(boxes[:, 2] <= im_w))
assert (torch.all(boxes[:, 1] <= im_h) and torch.all(boxes[:, 3] <= im_h))
feats = torch.zeros((boxes.shape[0], 6))
feats[:, 0] = boxes[:, 0] * 2.0 / im_w - 1 # xmin
feats[:, 1] = boxes[:, 1] * 2.0 / im_h - 1 # ymin
feats[:, 2] = boxes[:, 2] * 2.0 / im_w - 1 # xmax
feats[:, 3] = boxes[:, 3] * 2.0 / im_h - 1 # ymax
# feats[:, 4] = (feats[:, 0] + feats[:, 2]) / 2 # xcenter
# feats[:, 5] = (feats[:, 1] + feats[:, 3]) / 2 # ycenter
feats[:, 4] = feats[:, 2] - feats[:, 0] # box width
feats[:, 5] = feats[:, 3] - feats[:, 1] # box height
return feats
class FRCNNExtractor(object):
def __init__(self, extractor_dir, mode='caffe', extract_mode='roi_feats', min_max_boxes='10,50'):
args = {}
args['config_file'] = os.path.join(extractor_dir, 'config.yaml')
args['mode'] = mode
args['extract_mode'] = extract_mode
args['min_max_boxes'] = min_max_boxes
args['eval_only'] = True
args = Pack(args)
cfg = setup(args)
self.model = DefaultTrainer.build_model(cfg)
DetectionCheckpointer(self.model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
os.path.join(extractor_dir, cfg.MODEL.WEIGHTS), resume=False
)
self.model.eval()
self.cfg = cfg
self.vg_objects = load_vocab_file(os.path.join(extractor_dir, 'objects_vocab.txt'))
def fast_rcnn_inference_single_image(
self,
img,
boxes,
scores,
features,
dataset_dict,
score_thresh: float,
nms_thresh: float,
topk_per_image: int,
):
"""
Single-image inference. Return bounding-box detection results by thresholding
on scores and applying non-maximum suppression (NMS).
Args:
Same as `fast_rcnn_inference`, but with boxes, scores, and image shapes
per image.
Returns:
Same as `fast_rcnn_inference`, but for only one image.
"""
valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1)
if not valid_mask.all():
boxes = boxes[valid_mask]
scores = scores[valid_mask]
# scores = scores[:, :-1]
num_bbox_reg_classes = boxes.shape[1] // 4
# Convert to Boxes to use the `clip` function ...
boxes = boxes / dataset_dict['im_scale']
max_scores, max_classes = scores.max(1)
# 2. Apply NMS for each class independently.
keep = batched_nms(boxes, max_scores, max_classes, nms_thresh)
if topk_per_image >= 0:
keep = keep[:topk_per_image]
# print('num boxes before: {} after: {}'.format(len(boxes), len(keep)))
boxes, scores, features = boxes[keep], scores[keep], features[keep]
image_objects = np.argmax(scores.numpy()[:, 1:], axis=1)
image_h, image_w, _ = np.shape(img)
loc_feat = normalize_box_feats(boxes, image_h, image_w)
feat = torch.cat((features, loc_feat), axis=1)
obj_label = [self.vg_objects[i] for i in image_objects]
objects = ' '.join(obj_label)
info = {
'objects': objects,
'img_feat': feat,
}
meta = {
'obj_label': obj_label,
'bbox': boxes.tolist(),
'image_h': image_h,
'image_w': image_w,
}
return info, meta
def post_process(self, cfg, im, dataset_dict, boxes, scores, feats, attr_scores=None):
MIN_BOXES = cfg.MODEL.BUA.EXTRACTOR.MIN_BOXES
MAX_BOXES = cfg.MODEL.BUA.EXTRACTOR.MAX_BOXES
CONF_THRESH = cfg.MODEL.BUA.EXTRACTOR.CONF_THRESH
dets = boxes / dataset_dict['im_scale']
# TODO: test if image_objects is really correct to write this way
max_conf = torch.zeros((scores.shape[0])).to(scores.device)
for cls_ind in range(1, scores.shape[1]):
cls_scores = scores[:, cls_ind]
keep = nms(dets, cls_scores, 0.3)
max_conf[keep] = torch.where(cls_scores[keep] > max_conf[keep],
cls_scores[keep],
max_conf[keep])
keep_boxes = torch.nonzero(max_conf >= CONF_THRESH).flatten()
if len(keep_boxes) < MIN_BOXES:
keep_boxes = torch.argsort(max_conf, descending=True)[:MIN_BOXES]
elif len(keep_boxes) > MAX_BOXES:
keep_boxes = torch.argsort(max_conf, descending=True)[:MAX_BOXES]
print('num boxes before: {} after: {}'.format(len(boxes), len(keep_boxes)))
image_feat = feats[keep_boxes]
image_bboxes = dets[keep_boxes]
import pdb;
pdb.set_trace()
image_objects = np.argmax(scores[keep_boxes].numpy()[:, 1:], axis=1)
image_h = np.size(im, 0)
image_w = np.size(im, 1)
loc_feat = normalize_box_feats(image_bboxes, image_h, image_w).to(image_feat.device)
feat = torch.cat((image_feat, loc_feat), axis=1)
objects = ' '.join([self.vg_objects[i] for i in image_objects])
info = {
'objects': objects,
'img_feat': feat
}
return info
def batch_extract_feat(self, imgs: List[np.ndarray], batch_size: int = 1):
"""
extract rcnn feature in batch
:param imgs: list of numpy array representing raw imgs to
:type imgs: List[np.ndarray]
:param batch_size: batch size in, defaults to 1
:type batch_size: int, optional
:return: list of torch tensor
:rtype: List[torch.Tensor]
"""
st = time.time()
img_feat_list = []
meta_list = []
for b_imgs in tqdm(chunks(imgs, n=batch_size)):
dataset_dicts = [get_image_blob(img, self.cfg.MODEL.PIXEL_MEAN) for img in b_imgs]
# extract roi features
attr_scores = None
with torch.set_grad_enabled(False):
if self.cfg.MODEL.BUA.ATTRIBUTE_ON:
boxes, scores, features_pooled, attr_scores = self.model(dataset_dicts)
else:
boxes, scores, features_pooled = self.model(dataset_dicts)
boxes = [box.tensor.cpu() for box in boxes]
scores = [score.cpu() for score in scores]
features_pooled = [feat.cpu() for feat in features_pooled]
if attr_scores is not None:
attr_scores = [attr_score.cpu() for attr_score in attr_scores]
for img, data_dict, box, score, feat in zip(b_imgs, dataset_dicts, boxes, scores, features_pooled):
# img_feat = self.post_process(self.cfg, img, data_dict, box, score, feat)
img_feat, meta = self.fast_rcnn_inference_single_image(img, box, score, feat, data_dict,
self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST,
self.cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST, 50)
img_feat_list.append(img_feat)
meta_list.append(meta)
times = time.time() - st
print('time for {} imgs: {} s'.format(len(imgs), times))
print('fps: {}'.format(len(imgs) / times))
return img_feat_list, meta_list
if __name__ == "__main__":
extractor = FRCNNExtractor('resources/frcnn-bua-caffe-r101-with-attrs')
img_dir = '/home/vincent/proj/soco/soco/soco-image-sparta/data/coco/train2014'
# img_dir = './datasets/demo/debug'
img_path_list = os.listdir(img_dir)
budget = 100
imgs = []
for i, img in enumerate(img_path_list):
if i == budget:
break
imgs.append(cv2.imread(os.path.join(img_dir, img)))
results = extractor.batch_extract_feat(imgs, batch_size=1)