Skip to content

vin-dKR/hellium

Repository files navigation

AI Chatbot Platform - Project Documentation πŸ€–

Table of Contents

Overview 🌟

A modern AI chatbot platform designed specifically for sales and customer engagement. The platform combines sales-trained AI models with customizable chatbots that businesses can easily embed into their websites.

Key Highlights

  • Sales-optimized AI responses
  • Real-time customer engagement
  • Easy website integration
  • Customizable chat interface
  • Analytics and performance tracking

Mission Statement

To empower businesses with AI-driven sales automation that converts visitors into customers while providing 24/7 intelligent customer support.

Core Benefits

  • Sales Optimization: Pre-trained on sales conversations and techniques
  • Cost Reduction: Automated customer engagement and lead qualification
  • 24/7 Availability: Continuous customer support and lead capture
  • Easy Integration: Simple embed code for any website
  • Data Insights: Detailed analytics on customer interactions and conversions

Key Features 🎯

1. Chatbot Creation & Management

  • AI Chat Configuration

    • Custom domain integration
    • Chat window customization
    • Brand theme personalization
    • Multiple bot deployment
    • Real-time chat preview
  • Conversation Management

    • Sales-focused responses
    • Context-aware interactions
    • Automated lead qualification
    • Smart response handling
    • Chat history tracking

2. AI Integration

  • Natural Language Processing
    • Context-aware responses
    • Sentiment analysis
    • Multi-language support
    • Learning from conversations

3. Customization Options

  • Appearance

    • Theme customization
    • Brand color integration
    • Custom icons and avatars
    • Responsive design for all devices
  • Behavior

    • Working hours configuration
    • Fallback responses
    • Auto-response timing
    • Personalized greetings

4. Analytics & Insights

  • Dashboard Metrics
    • Total conversations
    • Active users tracking
    • Message history logs
    • Chat duration stats
    • Bot performance metrics

5. Integration Features

  • Easy Embedding
    • Simple JavaScript snippet
    • API access
    • Multiple website support

Technical Architecture πŸ—οΈ

Frontend Stack

  • Next.js 14.2.5 (App Router)
  • React 18
  • TypeScript 5
  • Tailwind CSS 3.4
  • Shadcn/ui Components
  • Clerk Authentication 4.29
  • Framer Motion 11
  • React Hook Form 7.52
  • Zod Validation
  • Pusher.js for Real-time

Backend Services

  • Node.js
  • Prisma ORM 5.22
  • PostgreSQL
  • Pusher
  • OpenAI API 4.57
  • Stripe Integration
  • Nodemailer

Third-Party Services

  • Uploadcare for Media
  • Clerk for Authentication
  • Stripe for Payments
  • OpenAI for AI Processing

User Journey πŸšΆβ€β™‚οΈ

1. Authentication Flow

graph LR
    A[Landing Page] --> B{User Status}
    B -->|New User| C[Sign Up]
    B -->|Existing User| D[Login]
    C --> E[Dashboard]
    D --> E[Dashboard]
Loading

2. Bot Creation Process

  1. Initial Setup

    • Domain verification
    • Basic configuration
  2. Knowledge Base

    • Document upload
    • FAQ import
    • Custom responses
  3. Training & Testing

    • AI model fine-tuning
    • Test conversations
    • Performance optimization
  4. Deployment

    • JavaScript embed code
    • Domain verification
    • Basic configuration

Implementation Details πŸ’»

1. Responsive Design

The platform implements a mobile-first approach with responsive breakpoints:

/* Base Mobile Styles */
.chatbot-window {
    width: 100%;
    height: 85vh;
}

/* Tablet & Desktop */
@media (min-width: 768px) {
    .chatbot-window {
        width: 400px;
        height: 600px;
    }
}

2. Real-time Communication

interface ChatMessage {
    id: string;
    content: string;
    timestamp: Date;
    sender: 'user' | 'bot';
    metadata?: {
        sentiment?: string;
        confidence?: number;
    };
}

3. Security Measures

  • Authentication

    // Clerk Authentication Middleware
    export default authMiddleware({
      publicRoutes: ["/api/chatbot"],
      ignoredRoutes: ["/api/public"],
    });

Security & Performance πŸ›‘οΈ

Security Features

  1. Authentication & Authorization

    • Clerk-based user management
    • Role-based access control
    • JWT token validation
  2. Data Protection

    • Encrypted data storage
    • Secure API endpoints
    • Rate limiting
    • CORS policies

Performance Optimization

  1. Frontend

    • Code splitting
    • Image optimization
    • Lazy loading
    • Caching strategies
  2. Backend

    • Database indexing
    • Query optimization
    • Connection pooling

Future Enhancements πŸš€

Planned Features

  1. Advanced AI Capabilities

    • Voice interaction
    • Image recognition
    • Predictive analytics
    • Multilingual support
  2. Integration Expansions

    • CRM integrations
    • E-commerce platforms
    • Social media channels
    • Help desk systems
  3. Analytics & Reporting

    • Custom report builder
    • Export capabilities
    • Advanced visualizations
    • ROI tracking

Roadmap

gantt
title Project Roadmap
dateFormat YYYY-MM-DD
section Phase 1
Core Features(from Web Prodigies) :2024-08-15, 90d
section Phase 2
Advanced AI :2024-09-04, 60d
section Phase 3
Integrations :2024-09-18, 90d
section Phase 4
Finishing :2024-11-01
Loading

Development Guidelines πŸ“

Code Style

// Example of component structure
interface ChatbotProps {
    domainId: string;
    theme?: ThemeConfig;
    position?: Position;
}

const Chatbot: React.FC<ChatbotProps> = ({
    domainId,
    theme = defaultTheme,
    position,
}) => {
    // Implementation
};

Deployment Architecture 🌐

graph TD
    A[Client] --> B[CDN]
    B --> C[Next.js Frontend]
    C --> D[API Routes]
    D --> E[Clerk Auth]
    D --> F[Chat Service]
    D --> G[(Neon PostgreSQL)]
    F <--> I[Pusher]
Loading

Application is deployed on Vercel with:

  • Frontend hosted on Vercel's Edge Network
  • Database on Neon (PostgreSQL)
  • Authentication via Clerk
  • Real-time communication through Pusher
  • AI processing via OpenAI