-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathExtract_Feats.py
53 lines (53 loc) · 2.28 KB
/
Extract_Feats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/python
import sys
import cv2
import imageio
import pylab
import numpy as np
sys.path.insert(0,'/home/vijay/deep-learning/caffe/python')
import caffe
import skimage.transform
def extract_feats(filenames,batch_size):
"""Function to extract VGG-16 features for frames in a video.
Input:
filenames: List of filenames of videos to be processes
batch_size: Batch size for feature extraction
Writes features in .npy files"""
model_file = './VGG_ILSVRC_16_layers.caffemodel'
deploy_file = './VGG16_deploy.prototxt'
net = caffe.Net(deploy_file,model_file,caffe.TEST)
layer = 'fc7'
mean_file = './ilsvrc_2012_mean.npy'
transformer = caffe.io.Transformer({'data':net.blobs['data'].data.shape})
transformer.set_mean('data',np.load(mean_file).mean(1).mean(1))
transformer.set_channel_swap('data', (2,1,0))
transformer.set_transpose('data',(2,0,1))
transformer.set_raw_scale('data',255.0)
net.blobs['data'].reshape(batch_size,3,224,224)
print "VGG Network loaded"
#Read videos and extract features in batches
for file in filenames:
vid = imageio.get_reader(file,'ffmpeg')
curr_frames = []
for frame in vid:
frame = skimage.transform.resize(frame,[224,224])
if len(frame.shape)<3:
frame = np.repeat(frame,3).reshape([224,224,3])
curr_frames.append(frame)
curr_frames = np.array(curr_frames)
print "Shape of frames: {0}".format(curr_frames.shape)
idx = map(int,np.linspace(0,len(curr_frames)-1,80))
curr_frames = curr_frames[idx,:,:,:]
print "Captured 80 frames: {0}".format(curr_frames.shape)
curr_feats = []
for i in range(0,80,batch_size):
caffe_in = np.zeros([batch_size,3,224,224])
curr_batch = curr_frames[i:i+batch_size,:,:,:]
for j in range(batch_size):
caffe_in[j] = transformer.preprocess('data',curr_batch[j])
out = net.forward_all(blobs=[layer],**{'data':caffe_in})
curr_feats.extend(out[layer])
print "Appended {} features {}".format(j+1,out[layer].shape)
curr_feats = np.array(curr_feats)
np.save(file[:-4] + '.npy',curr_feats)
print "Saved file {}\nExiting".format(file[:-4] + '.npy')