-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathapp_fp8.py
223 lines (194 loc) · 7.02 KB
/
app_fp8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import sys
sys.path.append("./")
import torch
from src.transformer import Transformer2DModel
from src.pipeline import Pipeline
from src.scheduler import Scheduler
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
)
from diffusers import VQModel
import gradio as gr
import time
from torchao.quantization.quant_api import (
quantize_,
float8_weight_only,
)
device = 'cuda'
def get_quantization_method(method):
quantization_methods = {
'fp8': lambda: float8_weight_only(),
'none': None
}
return quantization_methods.get(method, None)
def load_models(quantization_method='none'):
model_path = "MeissonFlow/Meissonic"
dtype = torch.float16
model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=dtype)
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae", torch_dtype=dtype)
text_encoder = CLIPTextModelWithProjection.from_pretrained(
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
torch_dtype=dtype
)
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
if quantization_method != 'none':
quant_method = get_quantization_method(quantization_method)
if quant_method:
quantize_(model, quant_method())
pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler)
return pipe.to(device)
# Global variable to store the pipeline
global_pipe = None
current_quantization = 'none'
def initialize_pipeline(quantization):
global global_pipe, current_quantization
if global_pipe is None or current_quantization != quantization:
global_pipe = load_models(quantization)
current_quantization = quantization
return global_pipe
def generate_images(prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps, quantization_method, batch_size=1,
progress=gr.Progress(track_tqdm=True)):
if randomize_seed or seed == 0:
seed = torch.randint(0, MAX_SEED, (1,)).item()
torch.manual_seed(seed)
# Initialize or update pipeline if needed
pipe = initialize_pipeline(quantization_method)
# Reset CUDA memory stats
torch.cuda.reset_peak_memory_stats()
start_time = time.time()
# Handle batch generation
if isinstance(prompt, str):
prompts = [prompt] * batch_size
else:
prompts = prompt[:batch_size]
images = pipe(
prompt=prompts,
negative_prompt=[negative_prompt] * batch_size,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps
).images
# Calculate performance metrics
inference_time = time.time() - start_time
memory_used = torch.cuda.max_memory_reserved() / (1024 ** 3) # Convert to GB
performance_info = f"""
Inference Time: {inference_time:.2f} seconds
Memory Used: {memory_used:.2f} GB
Quantization: {quantization_method}
"""
return images[0] if batch_size == 1 else images, seed, performance_info
MAX_SEED = 2**32 - 1
MAX_IMAGE_SIZE = 1024
default_negative_prompt = "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark"
examples = [
"Two actors are posing for a pictur with one wearing a black and white face paint.",
"A large body of water with a rock in the middle and mountains in the background.",
"A white and blue coffee mug with a picture of a man on it.",
"The sun is setting over a city skyline with a river in the foreground.",
"A black and white cat with blue eyes.",
"Three boats in the ocean with a rainbow in the sky.",
"A robot playing the piano.",
"A cat wearing a hat.",
"A dog in a jungle."
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Meissonic Text-to-Image Generator (with FP8 Support)")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
performance_info = gr.Textbox(label="Performance Metrics", lines=4)
with gr.Accordion("Advanced Settings", open=False):
quantization = gr.Radio(
choices=['none', 'fp8'],
value='none',
label="Quantization Method",
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value=default_negative_prompt,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=9.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=64,
)
batch_size = gr.Slider(
label="Batch Size",
minimum=1,
maximum=8,
step=1,
value=1,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=generate_images,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
quantization,
batch_size,
],
outputs=[result, seed, performance_info],
)
demo.launch()