-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTestAddNoiseLoader.py
81 lines (61 loc) · 2.67 KB
/
TestAddNoiseLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import utils
import torch
from torch.utils.data import Dataset
import csv
import os
import librosa
import librosa.display
import librosa.core
class TestSpect(Dataset):
def __init__(self,tsv_file, val_dir, features=None, num_features=None,
hop_size=160, n_fft=320, fs=16000,SNR=10, noise='white'):
total = []
with open(tsv_file) as tsv:
for line in csv.reader(tsv, delimiter = '\t'):
total.append(line)
self.features = features
self.wav = total
self.hop_size = hop_size
self.num_features = num_features
self.n_fft = n_fft
self.fs = fs
self.snr = int(SNR)
self.noise = noise
self.val_dir = val_dir
def __len__(self):
return len(self.wav)
def __getitem__(self, idx):
#train file will have audio, type noise, SNR
wav_files = self.wav
file_name = wav_files[idx][0]
file_path = os.path.join(self.val_dir, file_name)
[audio, fs] = librosa.load(file_path,self.fs)
clean_spect = librosa.stft(audio,n_fft=self.n_fft, hop_length=self.hop_size)
if self.noise == 'babble':
[sub_noise, sub_fs] = librosa.load('noise/babble_test.wav',self.fs)
elif self.noise == 'factory1':
[sub_noise, sub_fs] = librosa.load('noise/factory1_test.wav',self.fs)
elif self.noise == 'engine':
[sub_noise, sub_fs] = librosa.load('noise/engine_test.wav',self.fs)
elif self.noise =='ops':
[sub_noise, sub_fs] = librosa.load('noise/ops.wav',self.fs)
elif self.noise == 'bucc':
[sub_noise, sub_fs] = librosa.load('noise/bucc.wav',self.fs)
elif self.noise == 'dishes':
[sub_noise, sub_fs] = librosa.load('noise/dishes.wav',self.fs)
elif self.noise == 'bike':
[sub_noise, sub_fs] = librosa.load('noise/bike.wav',self.fs)
elif self.noise == 'tap':
[sub_noise, sub_fs] = librosa.load('noise/tap.wav',self.fs)
elif self.noise =='white':
sub_noise = np.random.normal(0,1,audio.shape)
noise_audio = utils.add_noise(audio,sub_noise, self.snr)
noise_spect = librosa.stft(noise_audio,n_fft=self.n_fft, hop_length=self.hop_size)
magC, phaseC = librosa.magphase(clean_spect)
magN, phaseN = librosa.magphase(noise_spect)
magClean = np.transpose(magC)
magNoise = np.transpose(magN)
#make this a function later on
sample = {'clean_mag': magClean, 'noise_mag': magNoise, 'noise_audio' :noise_audio,'clean_audio': audio }
return sample