-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransformer_Byol.py
188 lines (128 loc) · 5.24 KB
/
Transformer_Byol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 10 11:47:42 2022
@author: srpv
"""
import numpy as np
import os
import matplotlib.pyplot as plt
from torchvision import transforms
import torch
import torchvision.transforms as transforms
import torchvision
from torchvision import datasets
from torch.utils.data import Dataset, DataLoader, random_split
from torch.optim.lr_scheduler import StepLR
from matplotlib import animation
import math
from einops.layers.torch import Rearrange
from Model.losses import *
from Model.Networks import *
from Model.Augmentations import *
from Model.Byoltrainer import *
from Utils.Utils import *
from sklearn.preprocessing import StandardScaler
from MLClassification.Classifier import *
from Anomaly.Utils_one_class_SVM import *
cuda = torch.device("cuda" if torch.cuda.is_available() else "cpu") #Setting Up CUDA
print(torch.cuda.is_available())
#%%
# Data--> https://zenodo.org/records/10421423
# datadir = '../Data/train' #place data inside
# '../Data/test'
datadir ="C:/Users/srpv/Desktop/DED Byol/Data/" #path towards the dataset
traindir = datadir + 'train/'
testdir = datadir + 'test/'
categories = [[folder, os.listdir(traindir + folder)] for folder in os.listdir(traindir) if not folder.startswith('.') ]
epoch=100
batch_size=256
#%% Dataset preparation / Data loader
data_transform = transforms.Compose([
torchvision.transforms.Resize((480,320)),
transforms.ToTensor()])
train_dataset = datasets.ImageFolder(root=traindir,transform=data_transform)
test_dataset = datasets.ImageFolder(root=testdir,transform=data_transform)
classes = train_dataset.classes
train_loader = DataLoader(train_dataset,batch_size=batch_size,shuffle=True,drop_last=False,)
num_step = math.floor(len(train_loader.dataset) / batch_size)
unlabeled_loader = DataLoader(test_dataset,batch_size=256,shuffle=True,drop_last=False,)
#%% Model
model = ViT(patch_size=20, dim=64, depth=3, heads=8, mlp_dim=32)
count_parameters(model)
embeddinglayer_size=64
# model = EmbeddingNet(dropout=0.05,embedding=embeddinglayer_size)
model = BYOL(model, augmentation_tau(), augmentation_tau_prime(), #Augmentation to the dataset
embedding = embeddinglayer_size,epoch=epoch,num_step=num_step,projection_size=32).cuda()
count_parameters(model)
history = model.fit(train_loader,unlabeled_loader)
plot_curves(history)
#%%
train_plot = 'train_losses'+'_'+ '.npy'
val_plot = 'val_losses'+'_'+'.npy'
np.save(train_plot,history["train_loss"], allow_pickle=True)
np.save(val_plot,history["val_loss"], allow_pickle=True)
PATH = './Byol_DED.pth'
torch.save(model.state_dict(), PATH)
torch.save(model, PATH)
#%%
train_embeddings = 'Byol_train_embeddings'+ '.npy'
train_labelsname = 'Byol_train_labels'+'.npy'
test_embeddings = 'Byol_test_embeddings'+ '.npy'
test_labelsname = 'Byol_test_labels'+'.npy'
X_train, y_train = extract_embeddings(train_loader, model,train_embeddings,train_labelsname)
X_test, y_test = extract_embeddings(unlabeled_loader, model,test_embeddings,test_labelsname)
standard_scaler = StandardScaler()
X_train=standard_scaler.fit_transform(X_train)
X_test=standard_scaler.fit_transform(X_test)
#%% Embedding plots/ Dimensional reduction plots
_,_,tsne=TSNEplot(X_train,y_train,perplexity=10)
test_embeddings,test_labels=TSNEtransform(tsne,X_test,y_test)
graph_name='Byol_TSNE_Latent' +'_'+'.png'
ax,fig=Three_embeddings(test_embeddings,test_labels,graph_name,ang=195)#135
gif_name= str('Byol_TSNE_Latent')+'.gif'
def rotate(angle):
ax.view_init(azim=angle)
angle = 3
ani = animation.FuncAnimation(fig, rotate, frames=np.arange(0, 360, angle), interval=50)
ani.save(gif_name, writer=animation.PillowWriter(fps=20))
graph_name_2D='Byol_Training_Feature_2D' +'_'+'.png'
graph_title = "Feature space distribution"
plot_embeddings(X_test,y_test,classes,graph_title,graph_name_2D, xlim=None, ylim=None)
graph_name_3D='Byol_Latent_3D' +'_'+'.png'
ax,fig=Three_Latent_embeddings(X_train,y_train,graph_name_3D,ang=170, dim_1=20, dim_2=30, dim_3=31)#135
gif2_name= str('Byol_3D_Latent')+'.gif'
angle = 3
ani = animation.FuncAnimation(fig, rotate, frames=np.arange(0, 360, angle), interval=50)
ani.save(gif2_name, writer=animation.PillowWriter(fps=20))
Distribution_name_2D='Distribution_2D_'
distribution_plots(X_train,y_train,Distribution_name_2D)
fig, axs = plt.subplots(
nrows=8,
ncols=4,
sharey=False,
figsize=(11, 14),
dpi=1000
)
columns = np.atleast_2d(X_train).shape[1]
graph_name_32D='Byol_Latent_32D' +'_'+'.png'
for i in range(columns):
ax = axs.flat[i]
Cummulative_plots(X_train,y_train,i,ax)
fig.tight_layout();
fig.savefig(graph_name_32D)
fig.show()
#%%Accuracy on the classifier
classifier(X_train, X_test, y_train, y_test,'LogisticRegression','Byol')
classifier(X_train, X_test, y_train, y_test,'SVM','Byol')
classifier(X_train, X_test, y_train, y_test,'RF','Byol')
classifier(X_train, X_test, y_train, y_test,'GaussianNB','Byol')
#%%
train_embeddings = 'Byol_train_embeddings'+ '.npy'
X_train=np.load(train_embeddings)
train_labelsname = 'Byol_train_labels'+'.npy'
y_train=np.load(train_labelsname)
test_embeddings = 'Byol_test_embeddings'+ '.npy'
X_test=np.load(test_embeddings)
test_labelsname = 'Byol_test_labels'+'.npy'
y_test=np.load(test_labelsname)
anomaly_detection(X_train,X_test,y_train,y_test)