-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
207 lines (183 loc) · 7.85 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import json
import logging
import pickle
import os
from itertools import chain
import numpy as np
import torch
import torch.utils.data
from torch.utils.data import Dataset
LABEL_TOKENS_DICT = {
'contradiction': 0,
'neutral': 1,
'entailment': 2
}
def get_data(data_path, data_type, no_image=False):
# files = ['expl_1', 'labels', 's2']
# data = {
# f: [line.rstrip() for line in
# open(os.path.join(data_path, f"{f}.{data_type}"), 'r')] for f in files
# }
data = {}
data['expl'] = [line.rstrip() for line in open(
os.path.join(data_path, f"expl_1.{data_type}"), 'r')]
data['label'] = [line.rstrip() for line in open(
os.path.join(data_path, f"labels.{data_type}"), 'r')]
data['label_int'] = [
LABEL_TOKENS_DICT[i] for i in data['label']]
data['hypothesis'] = [line.rstrip() for line in open(
os.path.join(data_path, f"s2.{data_type}"), 'r')]
if no_image:
data['premise'] = [line.rstrip() for line in open(
os.path.join(data_path, f"s1.{data_type}"), 'r')]
else:
data['image_f'] = [line.rstrip() for line in open(
os.path.join(data_path, f"images.{data_type}"), 'r')]
return data
class InferenceDataset(Dataset):
def __init__(self, data, tokenizer, no_image=False, no_premise=True, with_expl=True):
self.data = data
self.tokenizer = tokenizer
self.no_image = no_image
self.no_premise = no_premise
self.with_expl = with_expl
if not no_image:
self.all_images_np = np.load(
'/home/hdd1/vibhav/VE-SNLI/e-SNLI-VE/data/flickr30k_resnet101_bottom_up_img_features.npy')
f = open(
'/home/hdd1/vibhav/VE-SNLI/e-SNLI-VE/data/filenames_77512.json', 'r')
self.all_image_names = json.load(f)
def __len__(self):
return len(self.data['label'])
def __getitem__(self, index):
if self.no_image and not self.no_premise:
input_seq = build_input_seq((self.data['premise'][index],
self.data['hypothesis'][index]),
self.tokenizer,
no_premise=self.no_premise)
else:
input_seq = build_input_seq(self.data['hypothesis'][index],
self.tokenizer, no_premise=self.no_premise)
input_ids = torch.tensor(input_seq).long()
label = torch.tensor(self.data['label_int'][index]).long()
output = (input_ids, label)
if not self.no_image:
image = self.all_images_np[self.all_image_names.index(
self.data['image_f'][index])]
output = output + (image,)
if self.with_expl:
expl_ids = self.tokenizer(self.data['expl'][index])['input_ids']
expl_ids = torch.tensor(expl_ids).long()
output = output + (expl_ids,)
return output # input_ids, label, image, expl_ids
def build_input_seq(inp, tokenizer, no_premise=False):
if no_premise:
hypothesis = inp
return tokenizer(hypothesis)['input_ids']
else:
premise, hypothesis = inp
return tokenizer(premise, hypothesis)['input_ids']
def collate_fn(batch, pad_token, no_image=False, with_expl=True):
def padding(seq, max_len, pad_token):
padded_mask = torch.ones((len(seq), max_len)).long() * pad_token
for i in range(len(seq)):
padded_mask[i, :len(seq[i])] = seq[i]
return padded_mask
input_ids, label = [], []
if not no_image:
image = []
if with_expl:
expl_ids = []
for i in batch:
input_ids.append(i[0])
label.append(i[1])
if not no_image:
image.append(i[2])
if with_expl:
expl_ids.append(i[3])
else:
if with_expl:
expl_ids.append(i[2])
if with_expl:
max_len_inp_ids = max(len(s) for s in input_ids)
max_len_expl_ids = max(len(s) for s in expl_ids)
max_len = max(max_len_inp_ids, max_len_expl_ids)
input_ids = padding(input_ids, max_len, pad_token)
expl_ids = padding(expl_ids, max_len, pad_token)
label = torch.tensor(label).long()
output = (input_ids, label, expl_ids)
else:
max_len_inp_ids = max(len(s) for s in input_ids)
input_ids = padding(input_ids, max_len_inp_ids, pad_token)
label = torch.tensor(label).long()
output = (input_ids, label)
if not no_image:
image = torch.tensor(image)
input_mask = input_ids.ne(pad_token).long()
image_mask = torch.ones((len(image), 36)).long()
input_mask = torch.cat([image_mask, input_mask], dim=1)
output = (image,) + output + (input_mask,)
else:
input_mask = input_ids.ne(pad_token).long()
output = output + (input_mask,)
return output # image, input_ids, label, expl_ids, input_mask
'''main'''
if __name__ == "__main__":
from transformers import *
from torch.utils.data import DataLoader
import itertools
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--data_type", type=str,
default="dev", help="dev or train or test")
parser.add_argument("--data_path", type=str,
default="/home/hdd1/vibhav/VE-SNLI/mycode-vesnli/dataset/e-SNLI-VE", help="Path of the dataset")
parser.add_argument("--no_image", action="store_true",
help="To process image or not")
parser.add_argument("--no_premise", action="store_true",
help="To process premise or not")
parser.add_argument("--with_expl", action="store_true",
help="To use explanations or not")
parser.add_argument("--to_save", action="store_true",
help="To save the dataset processed or not")
parser.add_argument("--final_data_path", type=str,
default="/home/hdd1/vibhav/VE-SNLI/DSTC8-AVSD-vibhav/vesnli/data/lbl1_expl_out", help="Path of the folder where dataset is to be stored")
args = parser.parse_args()
if not args.no_image:
args.no_premise = True
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
if not os.path.exists(args.final_data_path):
os.mkdir(args.final_data_path)
data = get_data(args.data_path, args.data_type, no_image=args.no_image)
dataset = InferenceDataset(data,
tokenizer,
no_image=args.no_image,
no_premise=args.no_premise,
with_expl=args.with_expl)
dataloader = DataLoader(dataset,
batch_size=4,
collate_fn=lambda x: collate_fn(x,
tokenizer.pad_token_id,
no_image=args.no_image,
with_expl=args.with_expl))
batch = next(iter(dataloader))
if args.no_image:
if args.with_expl:
input_ids, label, expl_ids, input_mask = batch
print('expl_ids', expl_ids[0])
print('expl_ids', tokenizer.convert_ids_to_tokens(expl_ids[0]))
else:
input_ids, label, input_mask = batch
else:
if args.with_expl:
image, input_ids, label, expl_ids, input_mask = batch
print('expl_ids', expl_ids[0])
print('expl_ids', tokenizer.convert_ids_to_tokens(expl_ids[0]))
else:
image, input_ids, label, input_mask = batch
for i, v in enumerate(batch):
print(i, v.shape)
print('input_ids', input_ids[0])
print('input_ids', tokenizer.convert_ids_to_tokens(input_ids[0]))
print('input_mask', input_mask[0])
print('label', label)