-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
245 lines (186 loc) · 5.79 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include "ErrorHandling.h"
#include "MatrixUtilities.h"
#include "DisplayGpuInfo.h"
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cublasXt.h>
#include <iostream>
#include <string.h>
#include <vector>
#include <chrono>
using std::cout;
using std::endl;
//Verify the GPU/Device and Host Result
#define VERIFY_ARRAYS 1
//32 or 16 bits floats arrays for the GPU arrays
#define A_32_BIT 1
#define B_32_BIT 1
#define C_32_BIT 1 //Always 32 bit
int main()
{
DisplayGpuInfo();
constexpr int rowsA = 10000;
constexpr int rank = 100;
constexpr int colsB = 10000;
int colsA = rank;
int rowsB = rank;
cout << "Arrays: rows X colums" << endl;
cout << "A = " << rowsA << " X " << colsA << endl;
cout << "B = " << rowsB << " X " << colsB << endl;
cout << "C = " << rowsA << " X " << colsB << endl
<< endl;
int m = rowsA;
int k = rank;
int n = colsB;
int lda = rowsA;
int ldb = rowsB;
int ldc = rowsA;
if (m % 4 == 0)
{ //rowsA
cout << "m % 4 == 0, best performance" << endl;
}
if (k % 8 == 0)
{ // rank = colsA = rowsB
cout << "k % 8 == 0, best performance" << endl;
}
if (lda % 8 == 0)
{ // rowsA ,16F A,B
cout << "lda % 8 == 0, best performance" << endl;
}
if (ldb % 8 == 0)
{ // rank = colsA = rowsB, 16F A,B
cout << "ldb % 8 == 0, best performance" << endl;
}
if (ldc % 4 == 0)
{ // rank = colsA = rowsB, 16F A,B
cout << "ldc % 4 == 0, best performance" << endl;
}
size_t sizeA = rowsA * rank;
size_t sizeB = rank * colsB;
size_t sizeC = rowsA * colsB;
#if A_32_BIT
float* A = new float[sizeA];
#else //16 Bit
half* A;
A = (half*)malloc(sizeA * sizeof(half));
#endif
#if B_32_BIT
float* B = new float[sizeB];
#else //16 Bit
half* B;
B = (half*)malloc(sizeB * sizeof(half));
#endif
#if C_32_BIT
float* C = new float[sizeC];
#else
#error "Result array must always be 32 bit."
#endif
#if VERIFY_ARRAYS
float* verifyC = new float[sizeC];
#endif
cout << "A is " << MatrixSizeMB(A, rowsA, rank) << "MB" << endl;
cout << "B is " << MatrixSizeMB(B, rank, colsB) << "MB" << endl;
cout << "C is " << MatrixSizeMB(C, rowsA, colsB) << "MB" << endl;
//Fill arrays on host
FillMatrix(A, m, k);
FillMatrix(B, k, n);
cublasHandle_t handle;
CUBLASS_HANDLE_ERROR(cublasCreate(&handle));
CUBLASS_HANDLE_ERROR(cublasSetMathMode(handle, cublasMath_t::CUBLAS_DEFAULT_MATH));
cublasMath_t mathMode;
CUBLASS_HANDLE_ERROR(cublasGetMathMode(handle, &mathMode));
if (mathMode == CUBLAS_DEFAULT_MATH) {
cout << "OK math mode: CUBLAS_DEFAULT_MATH" << endl;
}
cudaDataType_t d_A_mode;
cudaDataType_t d_B_mode;
cudaDataType_t d_C_mode;
#if A_32_BIT
float* d_A;
d_A_mode = CUDA_R_32F;
#else
half* d_A;
d_A_mode = CUDA_R_16F;
#endif
#if B_32_BIT
float* d_B;
d_B_mode = CUDA_R_32F;
#else
half* d_B;
d_B_mode = CUDA_R_16F;
#endif
#if C_32_BIT
float* d_C;
d_C_mode = CUDA_R_32F;
#else
half* d_C;
d_C_mode = CUDA_R_16F;
#endif
HANDLE_ERROR(cudaMalloc(&d_A, sizeA * sizeof(A[0])));
HANDLE_ERROR(cudaMalloc(&d_B, sizeB * sizeof(B[0])));
HANDLE_ERROR(cudaMalloc(&d_C, sizeC * sizeof(C[0])));
//Transfering arrays from host to device
HANDLE_ERROR(cudaMemcpy(d_A, A, sizeA * sizeof(A[0]), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(d_B, B, sizeB * sizeof(B[0]), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(d_C, C, sizeC * sizeof(C[0]), cudaMemcpyHostToDevice));
float alpha = 1.0f;
float beta = 0.0f;
if (intptr_t(d_A) % 16 == 0)
{
cout << "\n\nintptr_t(d_A) % 16 == 0, best performance\n";
}
if (intptr_t(d_B) % 16 == 0)
{
cout << "intptr_t(d_B) % 16 == 0, best performance\n";
}
if (intptr_t(d_C) % 16 == 0)
{
cout << "intptr_t(d_C) % 16 == 0, best performance\n";
}
std::cout << "\nStarting GPU matrix multiplication\n";
auto start = std::chrono::high_resolution_clock::now();
CUBLASS_HANDLE_ERROR(cublasGemmEx(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha,
d_A, d_A_mode, lda,
d_B, d_B_mode, ldb,
&beta, d_C, d_C_mode, lda, CUDA_R_32F, CUBLAS_GEMM_ALGO0_TENSOR_OP));
HANDLE_ERROR(cudaDeviceSynchronize());
auto stop = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(stop - start);
cout << "GPU Time: " << duration.count() << " ms" << std::endl;
HANDLE_ERROR(cudaMemcpy(C, d_C, sizeC * sizeof(C[0]), cudaMemcpyDeviceToHost));
HANDLE_ERROR(cudaDeviceSynchronize());
HANDLE_ERROR(cudaFree(d_A));
HANDLE_ERROR(cudaFree(d_B));
HANDLE_ERROR(cudaFree(d_C));
CUBLASS_HANDLE_ERROR(cublasDestroy(handle));
float* f_C = new float[sizeC];
cout << "\nStarting CPU matrix multiplication" << endl;
start = std::chrono::high_resolution_clock::now();
MatrixMulCPU(f_C, A, B, rowsA, rank, colsB); //Full float matrix multiply CPU
stop = std::chrono::high_resolution_clock::now();
duration = std::chrono::duration_cast<std::chrono::milliseconds>(stop - start);
cout << "CPU Time: " << duration.count() << " ms" << std::endl;
#if VERIFY_ARRAYS
// std::cout << "\n";
// std::cout << "\n";
// PrintMatrix(A, rowsA,rank);
// std::cout << "\n";
// std::cout << "\n";
// PrintMatrix(B, rank,colsB);
// std::cout << "\n";
// std::cout << "HOST \n";
// PrintMatrix(f_C, rowsA, colsB);
// std::cout << "\n";
// std::cout << "GPU Result\n";
// PrintMatrix(C, rowsA, colsB);
VerifyArrays(C, f_C, rowsA, colsB);
#endif
delete[] A;
delete[] B;
delete[] C;
#if VERIFY_ARRAYS
free(verifyC);
#endif
delete[] f_C;
return 0;
}