-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeature_correlation.py
70 lines (62 loc) · 2.28 KB
/
feature_correlation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import math
import argparse
import datetime
parser = argparse.ArgumentParser()
parser.add_argument('model')
parser.add_argument('--c', dest='count', help='minimum count',
default='10', type=int)
parser.add_argument('--n', dest='npmi', help='minimum NPMI value',
default='0.3', type=float)
args = parser.parse_args()
MIN_COUNT = args.count
MIN_NPMI = args.npmi
args.mode = args.model.strip()
print("Parsing features.")
feature2utt = {}
with open(args.model + '/features.tsv', 'r', encoding='utf8') as f:
# utterance label feature1 feature2 feature3 ...
header = next(f).strip()
utt_idx = 0
for line in f:
cells = line.strip().split('\t')
for feature_pkg in cells[2:]:
for feature in feature_pkg.split():
try:
feature2utt[feature].add(utt_idx)
except KeyError:
feature2utt[feature] = {utt_idx}
utt_idx += 1
print("Found {} features.".format(len(feature2utt)))
print("Removing rare features")
feature_list = []
for feature, utt in feature2utt.items():
if len(utt) < MIN_COUNT:
continue
feature_list.append((feature, utt))
print("{} features left.".format(len(feature_list)))
print("Calculating co-occurrence scores.")
n_utt = utt_idx
feature_combo2npmi = dict()
for i in range(len(feature_list) - 1):
if i % 500 == 0:
print(i, datetime.datetime.now())
for j in range(i + 1, len(feature_list)):
f_i, utt_i = feature_list[i]
f_j, utt_j = feature_list[j]
utt_inter = len(utt_i.intersection(utt_j))
if utt_inter == 0:
# We're only interested in positive correlation.
continue
p_xy = utt_inter / n_utt
p_x = len(utt_i) / n_utt
p_y = len(utt_j) / n_utt
h_xy = -math.log(p_xy)
npmi = math.log(p_xy / (p_x * p_y)) / h_xy
if npmi < MIN_NPMI:
continue
feature_combo2npmi[(f_i, f_j)] = npmi
print("Sorting by NPMI and writing to file.")
with open(args.model + '/features-correlated.tsv', 'w+', encoding='utf8') as f:
for (f_i, f_j), npmi in sorted(feature_combo2npmi.items(),
key=lambda item: item[1], reverse=True):
f.write('{}\t{}\t{:.6f}\n'.format(f_i, f_j, npmi))