-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path05.tex
306 lines (260 loc) · 9.92 KB
/
05.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
\section{Lecture -- Week 5}
\subsection{Normal extensions}
\begin{proposition}
Let $E/K$ be an algebraic extension and $\sigma\in\Hom(E/K,E/K)$.
Then $\sigma$ is bijective.
\end{proposition}
\begin{proof}
It is enough to prove that $\sigma$ is surjective. Why?
Let $x\in E$ and
$C$ be an algebraic closure of $K$ that contains $E$. By Proposition~\ref{pro:Artin}, there
exists a field homomorphism $\varphi\colon C\to C$ such that $\varphi|_E=\sigma$.
Thus $\varphi|_K=\sigma|_K=\id_K$. Let $G=\Gal(C/K)$. Then
$\varphi\in G$. If $z\in O_G(x)$,
then $z=\tau(x)$ for some $\tau\in G$ and hence
\[
\varphi(z)=\varphi(\tau(x))=(\varphi\tau)(x).
\]
This implies that $\varphi(z)\in O_G(x)$
and $\varphi(O_G(x))=O_G(x)$. The restriction
$\sigma|_{E\cap O_G(x)}$ is injective. Then
\begin{align*}
\sigma(E\cap O_G(x))&=\varphi(E\cap O_G(x))\\
&=\varphi(E)\cap\varphi(O_G(x))
=\sigma(E)\cap O_G(x)\subseteq E\cap O_G(x).
\end{align*}
Since $|E\cap O_G(x)|<\infty$, it follows that $E\cap O_G(x)=\sigma(E\cap O_G(x))$ and
hence $x$ belongs to the image of $\sigma$.
\end{proof}
% pag 21 example
\begin{definition}
Let $E/K$ be an algebraic extension and $C$ be an algebraic closure of $K$ containing $E$. Then $E/K$ is \emph{normal} if
$\sigma(E)\subseteq E$ for all $\sigma\in\Hom(E/K,C/K)$.
\end{definition}
Note that $\sigma(E)\subseteq E$ in the previous definition
is equivalent to $\sigma(E)=E$.
\begin{example}
The extension $\Q(\sqrt[3]{2})/\Q$ is not normal. Why?
\end{example}
Some trivial examples of normal extensions: $K/K$ is normal
and if $C$ is an algebraic closure of $K$, then $C/K$ is normal.
\begin{example}
The extension $\Q(\sqrt{2})/\Q$ is normal.
Every extension generated by algebraic elements of degree two is normal.
\end{example}
\begin{exercise}
\label{xca:Q(sqrt[3]{2},xi) normal}
Let $\xi$ be a primitive cubic root of one. Then
$\Q(\sqrt[3]{2},\xi)/\Q$ is normal.
\end{exercise}
The following result is practical but technical. That is why we leave the proof
as an exercise.
\begin{exercise}
Prove that the previous definition depends only on $E$ (and not on the
algebraic closure $C$).
\end{exercise}
Some properties:
\begin{proposition}
\label{pro:linear_factorization}
Let $E/K$ be a normal extension and $f\in K[X]$ be an irreducible polynomial
that admits a root $x$ in $E$. Then $f$ factorizes
linearly in $E$.
\end{proposition}
\begin{proof}
We may assume that $f$ is monic. Let $C/K$ be an algebraic closure of $K$ containing $E$.
Let $y$ be a root of $f$ in $C$. Since $f=f(x,K)=f(y,K)$,
it follows that $y=\sigma(x)$ for some $\sigma\in\Gal(C/K)$. Since
$E/K$ is normal, $\sigma|_E\colon E\to C$ is an automorphism of $E/K$, that is
$\sigma(E)\subseteq E$. In particular, $y\in E$.
\end{proof}
Let $K\subseteq F\subseteq E$ be a tower of fields.
If $E/K$ is normal, then $E/F$ is normal. However,
Note that $E/K$ normal does not imply $F/K$ normal, as this would imply
that every extension is normal. Moreover,
$E/F$ normal and $F/K$ normal do not imply $E/K$ normal.
\begin{example}
The extensions $\Q(\sqrt[4]{2})/\Q(\sqrt{2})$ and $\Q(\sqrt{2})/\Q$ are both
normal, but the extension $\Q(\sqrt[4]{2})/\Q$ is not,
as the roots of $X^4-2$ are
$\sqrt[4]{2}$, $-\sqrt[4]{2}$, $\sqrt[4]{2}i$ and $-\sqrt[4]{2}i$.
\end{example}
Recall that if $C$ is an algebraic closure of $K$ and $x\in C$,
then
\[
f(x,K)=\prod(X-y)^m,
\]
where the product is taken over all
$y\in O_{\Gal(C/K)}(x)$.
If $E/K$ is normal and $x\in E$, then there exists $m$ such that
\[
f(x,K)=\prod(X-y)^m,
\]
where the product is taken over all
$y\in O_{\Gal(E/K)}(x)$.
\begin{proposition}
Let $E/K$ and $F/K$ be extensions. If $F/K$
is normal, then $EF/E$ is normal.
\end{proposition}
\begin{proof}
Let $C$ be an algebraic closure of $E$ containing $EF$ (this exists because $EF/E$ is algebraic).
Let $\sigma\in\Hom(EF/E,C/E)$. We claim that $\sigma(EF)=EF$. Let
\[
\overline{K}=\{x\in C:x\text{ is algebraic over $K$}\}.
\]
Then $\overline{K}$ is an algebraic closure over $K$ and $F\subseteq\overline{K}$.
Since $F/K$ is normal and $\sigma|_F\in\Hom(F/K,\overline{K}/K)$,
it follows that $\sigma(F)=F$. If $z\in EF$, then
$z=\sum_{i=1}^m e_if_i$ for some $e_1,\dots,e_m\in E$ and
$f_1,\dots,f_m\in F$. Since $\sigma(e_i)=e_i$ for all $i$,
\[
\sigma(z)=\sum_{i=1}^m\sigma(e_i)\sigma(f_i)=\sum_{i=1}^m e_i\sigma(f_i)\in EF.\qedhere
\]
\end{proof}
What is the relation between
normal extensions and decomposition fields? The notions look
deeply related. The following proposition serves as an explanation:
\begin{proposition}
\label{pro:normal<=>dec}
Let $E/K$ be an algebraic extension. Then
$E/K$ is normal if and only if $E/K$ is the decomposition field
of a family of polynomials of $K[X]$ of positive degree.
\end{proposition}
\begin{proof}
Assume first that $E/K$ is a normal extension.
Let $G=\Gal(E/K)$. If $x\in E$ and $f(x,K)=\prod_{y\in O_G(x)}(X-y)^m$,
then $f(x,K)$ factorizes linearly in $E[X]$. Thus
$E/K$ is a decomposition field of the family
$\{f(x,K):x\in E\}$.
Conversely, assume that $E/K$ is a decomposition field of the family
$\{f_i:i\in I\}$. Then $E=K(S)$ where $S$ is the set of roots
of the polynomials $f_i$. Let $C/K$ be an algebraic closure
of $K$ that contains $E$ and let $\sigma\in\Hom(E/K,C/K)$. Let $x\in S$.
Then $x$ is a root of some $f_j=\sum a_kX^k$. Since $f_j(x)=0$,
it follows that $\sigma(x)$ is a root of $f_j$, as
\[
f_j(\sigma(x))=\sum a_k\sigma(x)^k
=\sum\sigma(a_k)\sigma(x^k)
=\sigma\left(\sum a_kx^k\right)=\sigma(0)=0.
\]
Hence $\sigma(E)\subseteq E$.
\end{proof}
\begin{exercise}
\label{xca:Q[sqrt[4]{7}+sqrt{2}]}
Let $E=\Q[\sqrt[4]{7}+\sqrt{2}]$.
\begin{enumerate}
\item Prove that $E/\Q$ is not normal.
\item Compute $[E:\Q]$.
\item Compute $\Gal(E/\Q)$.
\end{enumerate}
\end{exercise}
\subsection{Dedekind's theorem}
Note that every extension homomorphism $E/K\to F/K$ is, in particular,
a $K$-linear map $E\to F$, that is
\[
\Hom(E/K,F/K)\subseteq\Hom_K(E,F).
\]
If $F/K$ is an extension and $V$
is a $K$-vector space, the set
$\Hom_K(V,F)$ of $K$-linear maps
is a vector space over $F$ with
$(a\cdot f)(v)=af(v)$ for $a\in F$,
$f\in\Hom_K(V,F)$ and $v\in V$.
\begin{exercise}
\label{xca:dim}
Let $V$ be a $K$-vector space.
Prove that $\dim_F\Hom_K(V,F)\geq\dim_KV$. Moreover, if
$\dim_KV<\infty$, then $\dim_F\Hom_K(V,F)=\dim_KV$.
\end{exercise}
If $V$ is a vector space and $S$ is a (possibly infinite) subset of $V$,
then $S$ is linearly independent if every finite subset of $S$ is linearly independent.
\begin{theorem}[Dedekind]
\index{Dedekind's theorem}
Let $E/K$ and $F/K$ be extensions and let
$\{\varphi_i:i\in I\}$
be a subset of
$\Hom(E/K,F/K)$, i.e. a
family of extension homomorphisms. Assume that
$\varphi_i\ne \varphi_j$ if $i\ne j$. Then
the subset $\{\varphi_i:i\in I\}\subseteq\Hom_K(E,F)$
is linearly independent over $F$.
\end{theorem}
\begin{proof}
Assume it is not. Let $\{\varphi_1,\dots,\varphi_n\}$
be linearly dependent over $F$ with $n$ minimal. Clearly, $n>1$.
Without loss of generality, we may assume that
\begin{equation}
\label{eq:Dedekind1}
\sum_{i=1}^n a_i\varphi_i=0
\end{equation}
for some $a_1,\dots,a_n\in F$ all different from zero.
Let
$z\in E\setminus\{0\}$ be such that $\varphi_1(z)\ne\varphi_2(z)$. If $x\in E$, then
\[
0=\left(\sum_{i=1}^na_i\varphi_i\right)(xz)=\sum_{i=1}^na_i\varphi_i(xz)
=\sum_{i=1}^na_i\varphi_i(x)\varphi_i(z)
=\left(\sum_{i=1}^n (a_i\varphi_i(z))\varphi_i\right)(x).
\]
Thus
\[
\sum_{i=1}^n (a_i\varphi_i(z))\varphi_i=0.
\]
Since $\varphi_1(z)\ne0$,
\begin{equation}
\label{eq:Dedekind2}
a_1\varphi_1+a_2\frac{\varphi_2(z)}{\varphi_1(z)}\varphi_2+\cdots+a_n\frac{\varphi_n(z)}{\varphi_1(z)}\varphi_n=0.
\end{equation}
Thus,
subtracting \eqref{eq:Dedekind1} and \eqref{eq:Dedekind2},
\[
\left(a_2-a_2\frac{\varphi_2(z)}{\varphi_1(z)}\right)\varphi_2
+\cdots+\left(a_n-a_n\frac{\varphi_n(z)}{\varphi_1(z)}\right)\varphi_n=0.
\]
Since $a_n\ne 0$ and $\varphi_2(z)\ne\varphi_1(z)$,
the scalar $a_2-a_2\frac{\varphi_2(z)}{\varphi_1(z)}\ne 0$ and hence
$\{\varphi_2,\dots,\varphi_n\}$ is linearly dependent, a contradiction.
\end{proof}
If $E/K$ and $F/K$ are extensions,
let $\gamma(E/K,F/K)=|\Hom(E/K,F/K)|$.
\begin{exercise}
Prove the following statements:
\begin{enumerate}
\item $\gamma(E/K,F/K)\leq\dim_F\Hom_K(E,F)$.
\item If $[E:K]<\infty$, then $\gamma(E/K,F/K)\leq[E:K]$.
\item If $x$ is algebraic over $K$, then $\gamma(K(x)/K,F/K)\leq\deg f(x,K)$.
\end{enumerate}
\end{exercise}
If $C$ is an algebraic closure of $K$,
then we define $\gamma(E/K)=\gamma(E/K,C/K)$. This definition does
not depend on the algebraic closure.
\begin{exercise}
\label{xca:gamma_C}
If $C$ and $C_1$ are algebraic closures of $K$, then
\[
|\Hom(E/K,C/K)|=|\Hom(E/K,C_1/K)|.
\]
\end{exercise}
\begin{proposition}
\label{pro:gamma_orbit}
Let $C$ be an algebraic closure of $K$ and $G=\Gal(C/K)$.
If $x\in C$, then $\gamma(K(x)/K)=|O_G(x)|$.
\end{proposition}
\begin{proof}
If $\sigma\in\Hom(K(x)/K,C/K)$, then there exists $\phi\in G$ such that
$\phi|_{K(x)}=\sigma$. Thus
\[
\sigma(x)=\phi(x)\in O_G(x).
\]
Conversely,
if $y\in O_G(x)$, then there exists $\tau\in G$ such that
$y=\tau(x)$. Hence
\[
\tau|_{K(x)}\in\Hom(K(x)/K,C/K)
\]
and
$\tau|_{K(x)}(x)=y$. Since our sets are then in bijective correspondence,
the claim follows.
\end{proof}
\begin{exercise}
If $E/K$ is finite, then $|\Gal(E/K)|\leq [E:K]$. Moreover,
$E/K$ is normal if and only if $|\Gal(E/K)|=\gamma(E/K)$.
\end{exercise}