forked from garyzhao/SemGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_mdn.py
executable file
·416 lines (352 loc) · 13.4 KB
/
main_mdn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
"""
This code is based on (and an extension of) the publicly-available implementation of SemGCN.
https://github.com/garyzhao/SemGCN
"""
from __future__ import print_function, absolute_import, division
import os
import time
import datetime
import numpy as np
import os.path as path
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from progress.bar import Bar
from common.arguments import parse_args, args_to_file
from common.log import Logger, savefig
from common.utils import AverageMeter, lr_decay, save_ckpt
from common.graph_utils import adj_mx_from_skeleton
from common.data_utils import fetch, read_3d_data, create_2d_data
from common.generators import PoseGenerator, CamPoseGenerator, BatchSampler
from common import loss
from common import mdn_loss
from models.sem_gcn_mdn import SemGCN_MDN_Graph
def main(args):
print("==> Using settings {}".format(args))
# Load data in a way that is semi-robust to path differences
print("==> Loading dataset...")
directory_for_this_file = os.path.dirname(__file__)
data_folder_name = "data"
data_root = os.path.join(directory_for_this_file, data_folder_name)
dataset_path = path.join(data_root, "data_3d_" + args.dataset + ".npz")
if args.dataset == "h36m":
from common.h36m_dataset import Human36mDataset, TRAIN_SUBJECTS, TEST_SUBJECTS
dataset = Human36mDataset(dataset_path)
subjects_train = TRAIN_SUBJECTS
subjects_test = TEST_SUBJECTS
else:
raise KeyError("Invalid dataset")
print("==> Preparing data...")
dataset = read_3d_data(dataset)
print("==> Loading 2D detections...")
keypoints = create_2d_data(path.join(data_root, "data_2d_" + args.dataset + "_" + args.keypoints + ".npz"), dataset)
action_filter = None if args.actions == "*" else args.actions.split(",")
if action_filter is not None:
action_filter = list(map(lambda x: dataset.define_actions(x)[0], action_filter))
print("==> Selected actions: {}".format(action_filter))
stride = args.downsample
if torch.cuda.is_available():
cudnn.benchmark = True
device = torch.device("cuda")
torch.set_default_tensor_type("torch.cuda.FloatTensor")
else:
device = torch.device("cpu")
# Define Metrics
metrics = ["best_p1", "best_p2", "mean_p1", "mean_p2", "max_p1", "max_p2"]
# Create model
print("==> Creating model...")
p_dropout = None if args.dropout == 0.0 else args.dropout
adj = adj_mx_from_skeleton(dataset.skeleton())
model_pos = SemGCN_MDN_Graph(
adj,
args.hid_dim,
num_gaussians=args.num_gaussians,
num_layers=args.num_layers,
p_dropout=p_dropout,
tanh_out=args.tanh_out,
pose_level_pi=args.pose_level_pi,
uniform_sigma=args.uniform_sigma,
multivariate=args.multivariate,
nodes_group=dataset.skeleton().joints_group() if args.non_local else None,
).to(device)
print("==> Total parameters: {:.2f}M".format(sum(p.numel() for p in model_pos.parameters()) / 1000000.0))
optimizer = torch.optim.Adam(model_pos.parameters(), lr=args.lr, weight_decay=args.l2_norm)
if args.pose_level_pi:
criterion = mdn_loss.mdn_loss_fn_pose_distributions
else:
criterion = mdn_loss.mdn_loss_fn
# Optionally resume from a checkpoint
if args.resume:
ckpt_path = args.resume
if path.isfile(ckpt_path):
print("==> Loading checkpoint '{}'".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location=torch.device("cpu"))
start_epoch = ckpt["epoch"]
error_best = ckpt["error"]
glob_step = ckpt["step"]
lr_now = ckpt["lr"]
model_pos.load_state_dict(ckpt["state_dict"])
optimizer.load_state_dict(ckpt["optimizer"])
print("==> Loaded checkpoint (Epoch: {} | Error: {})".format(start_epoch, error_best))
ckpt_dir_path = path.dirname(ckpt_path)
if args.resume:
logger = Logger(path.join(ckpt_dir_path, "log.txt"), resume=True)
else:
raise RuntimeError("==> No checkpoint found at '{}'".format(ckpt_path))
else:
start_epoch = 0
error_best = None
glob_step = 0
lr_now = args.lr
# Encode various useful parameters in the checkpoint filename
ckpt_dir_path = path.join(
args.checkpoint,
"ds_{}_numK{}_drop{}_nhid_{}_tanh{}_pPi_{}_mvar_{}_{}".format(
args.keypoints,
args.num_gaussians,
args.dropout,
args.hid_dim,
args.tanh_out,
args.pose_level_pi,
args.multivariate,
datetime.datetime.now().isoformat(":", "seconds"),
),
)
if not path.exists(ckpt_dir_path):
os.makedirs(ckpt_dir_path)
print("==> Making checkpoint dir: {}".format(ckpt_dir_path))
args_to_file(args, os.path.join(ckpt_dir_path, "params.txt"))
logger = Logger(os.path.join(ckpt_dir_path, "log.txt"))
logger.set_names(["epoch", "lr", "loss_train"] + metrics)
# Setup the training data
poses_train, poses_train_2d, actions_train, subj_train = fetch(
subjects_train, dataset, keypoints, action_filter, stride
)
train_loader = DataLoader(
PoseGenerator(poses_train, poses_train_2d, actions_train, subj_train),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
)
# Set up the validation data
poses_valid, poses_valid_2d, actions_valid, subj_valid = fetch(
subjects_test, dataset, keypoints, action_filter, stride
)
valid_loader = DataLoader(
PoseGenerator(poses_valid, poses_valid_2d, actions_valid, subj_valid),
batch_size=args.eval_batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
)
d_scheduler = None
if args.onecycle_lr:
scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=0 ,max_lr=args.lr,
step_size_up=int((args.epochs-start_epoch)*len(train_loader)*0.5),
#step_size_down=int((args.epochs-start_epoch)*len(train_loader)*0.7),
cycle_momentum=False)
else:
scheduler = None
for epoch in range(start_epoch, args.epochs):
print("\nEpoch: %d | LR: %.8f" % (epoch + 1, lr_now))
#eval_loss = evaluate_all(valid_loader, model_pos, device, criterion)
# Train for one epoch
epoch_loss, lr_now, glob_step = train(
train_loader,
model_pos,
criterion,
optimizer,
device,
args.lr,
lr_now,
glob_step,
args.lr_decay,
args.lr_gamma,
max_norm=args.max_norm,
onecycle_scheduler = scheduler,
)
# Evaluate
eval_loss = evaluate_all(valid_loader, model_pos, device, criterion)
# Update log file
logger.append(
[
epoch + 1,
lr_now,
epoch_loss,
eval_loss["best_p1"].avg,
eval_loss["best_p2"].avg,
eval_loss["mean_p1"].avg,
eval_loss["mean_p2"].avg,
eval_loss["max_p1"].avg,
eval_loss["max_p2"].avg,
]
)
# Save checkpoint
if error_best is None or error_best > eval_loss["best_p1"].avg:
error_best = eval_loss["best_p1"].avg
save_ckpt(
{
"epoch": epoch + 1,
"lr": lr_now,
"step": glob_step,
"state_dict": model_pos.state_dict(),
"optimizer": optimizer.state_dict(),
"error": eval_loss["best_p1"].avg,
},
ckpt_dir_path,
suffix="best",
)
save_ckpt(
{
"epoch": epoch + 1,
"lr": lr_now,
"step": glob_step,
"state_dict": model_pos.state_dict(),
"optimizer": optimizer.state_dict(),
"error": eval_loss["best_p1"].avg,
},
ckpt_dir_path,
suffix="final",
)
logger.close()
logger.plot(["loss_train", "best_p1"])
savefig(path.join(ckpt_dir_path, "log.eps"))
return
def train(
data_loader,
model_pos,
criterion,
optimizer,
device,
lr_init,
lr_now,
step,
decay,
gamma,
max_norm=True,
onecycle_scheduler=None,
):
batch_time = AverageMeter()
data_time = AverageMeter()
epoch_loss_3d_pos = AverageMeter()
# Switch to train mode
torch.set_grad_enabled(True)
model_pos.train()
end = time.time()
start = time.time()
dataset_size = len(data_loader)
bar = Bar("Train", max=len(data_loader))
for i, (targets_3d, inputs_2d, _, subj) in enumerate(data_loader):
# Measure data loading time
data_time.update(time.time() - end)
num_poses = targets_3d.size(0)
step += 1
if not onecycle_scheduler:
if step % decay == 0 or step == 1:
lr_now = lr_decay(optimizer, step, lr_init, decay, gamma)
targets_3d, inputs_2d = targets_3d.to(device), inputs_2d.to(device)
# Predict 3D poses from inputs
outputs_3d = model_pos(inputs_2d)
# Calculate loss and backprop
loss_3d_pos = criterion(outputs_3d, targets_3d)
optimizer.zero_grad()
loss_3d_pos.backward()
if max_norm:
nn.utils.clip_grad_norm_(model_pos.parameters(), max_norm=1)
optimizer.step()
epoch_loss_3d_pos.update(loss_3d_pos.item(), num_poses)
if onecycle_scheduler:
onecycle_scheduler.step()
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
bar.suffix = (
"({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {ttl:} | ETA: {eta:} "
"| Loss: {loss: .3f} ".format(
batch=i + 1,
size=len(data_loader),
data=data_time.val,
bt=batch_time.avg,
ttl=bar.elapsed_td,
eta=bar.eta_td,
loss=epoch_loss_3d_pos.avg
)
)
bar.next()
bar.finish()
return epoch_loss_3d_pos.avg, lr_now, step
def evaluate_all(data_loader, model_pos, device, criterion):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = defaultdict(AverageMeter)
# Switch to evaluate mode
torch.set_grad_enabled(False)
model_pos.eval()
end = time.time()
start = time.time()
bar = Bar("Eval ", max=len(data_loader))
for i, (targets_3d, inputs_2d, _, subj) in enumerate(data_loader):
# Measure data loading time
data_time.update(time.time() - end)
num_poses = targets_3d.size(0)
inputs_2d = inputs_2d.to(device)
outputs_3d = model_pos(inputs_2d)
#zero hip joint
mu = outputs_3d[0]
mu[:, :1] = 0*mu[:, :1]
outputs_3d = (mu, outputs_3d[1], outputs_3d[2])
"""
Below, we get all the predictions made by the GraphMDN model:
* Best: Prediction using the hypothesis that agrees best with the target
* Mean: Weighted average of the hypotheses according to their mixing coefficients
* Max: Prediction from the kernel with the highest mixing coefficient
"""
loss_3d_pos = criterion(outputs_3d, targets_3d.to(device))
losses['loss'].update(loss_3d_pos, num_poses)
preds = mdn_loss.get_all_preds(outputs_3d, targets_3d, aligned=False, subj=subj)
# Cycle through the types of predictions (see above) and calculate error for Protocol 1 & 2.
for k, v in preds.items():
# MPJPE (Protocol 1)
losses[k + "_p1"].update(
loss.mpjpe(preds[k], targets_3d).item() * 1000.0, num_poses
)
# P-MPJPE (Protocol 2)
losses[k + "_p2"].update(
loss.p_mpjpe(preds[k].numpy(), targets_3d.numpy()).item() * 1000.0,
num_poses,
)
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
bar.suffix = (
"({batch}/{size}) | Total: {ttl:} | ETA: {eta:} |"
" High: ({h1: .3f}, {h2: .3f}), "
"Avg: ({a1: .3f}, {a2: .3f}), Best: ({b1: .3f}, {b2: .3f}) | "
"Loss: {l: .3f}".format(
batch=i + 1,
size=len(data_loader),
ttl=bar.elapsed_td,
eta=bar.eta_td,
h1=losses["max_p1"].avg,
h2=losses["max_p2"].avg,
a1=losses["mean_p1"].avg,
a2=losses["mean_p2"].avg,
b1=losses["best_p1"].avg,
b2=losses["best_p2"].avg,
l=losses["loss"].avg,
)
)
bar.next()
#if i%100 == 0:
# for k, avg_meter in losses.items():
# print('{}:{:.3f}'.format(k, avg_meter.avg))
bar.finish()
#for k, avg_meter in losses.items():
# print('{}:{:.3f}'.format(k, avg_meter.avg))
return losses
if __name__ == "__main__":
main(parse_args())