-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmainv2.py
84 lines (68 loc) · 2.26 KB
/
mainv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
from keras.models import Sequential, Model
from keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D, Activation
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import os
import csv
from keras.applications.vgg16 import VGG16
model = VGG16()
width = 224
height = 224
'''
img = load_img("rim-flow-data/train/glaucoma/G-1-L.jpg")
x = img_to_array(img) #numpy array
x = x.reshape((1,) + x.shape) #adds on dimension for keras
print(x.shape)'''
model = Sequential()
model.add(Conv2D(64, (4,4), input_shape=(width,height,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(16, (2,2)))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(2))
model.add(Activation('softmax'))
model.load_weights("eighth_try.h5")
# model = VGG16(weights='imagenet', include_top=True)
# x = Dense(2, activation='softmax', name='predictions')(model.layers[-2].output)
#Then create the corresponding model
# model = Model(input=model.input, output=x)
#model.summary()
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
traindatagen = ImageDataGenerator(
rescale=1./255,
samplewise_std_normalization=True)
testdatagen = ImageDataGenerator(
rescale=1./255,
samplewise_std_normalization=True)
train_generator = traindatagen.flow_from_directory(
'rim-flow-datav2/train', # this is the target directory
target_size=(width, height),
batch_size=5,
color_mode='rgb')
validation_generator = testdatagen.flow_from_directory(
'rim-flow-datav2/validation',
target_size=(width, height),
color_mode='rgb')
model.fit_generator(
train_generator,
epochs=40,
validation_data=validation_generator)
model.save_weights('ninth_try.h5')
#fifth_try - 61.29%
#sixth_try - 67%
#sevent_try - 61% - mainv2
#eighth_try - 64% (new arch)
#ninth - try -