From 40ecf665a0d298b1e3b92f6a8abda5e609776e59 Mon Sep 17 00:00:00 2001 From: Tianbai Xiao Date: Thu, 5 Aug 2021 10:28:44 +0200 Subject: [PATCH] Update eg_burgers.md --- docs/src/eg_burgers.md | 63 ++++++++++++------------------------------ 1 file changed, 17 insertions(+), 46 deletions(-) diff --git a/docs/src/eg_burgers.md b/docs/src/eg_burgers.md index ad713281..35a6b1f9 100644 --- a/docs/src/eg_burgers.md +++ b/docs/src/eg_burgers.md @@ -4,49 +4,36 @@ Now we could turn to the Burgers equation. It's a typical hyperbolic conservation law, where discontinuous solution can emerge in a self-evolving system. Let's consider the same initial configuration as advection-diffusion example. ```julia -using ProgressMeter, OffsetArrays, Plots -import KitBase +using KitBase, Plots -set = KitBase.Setup( +set = Setup( "scalar", # matter - "advection", # case + "burgers", # case "1d0f0v", # space "gks", # flux "", # collision: for scalar conservation laws there are none 1, # species - 2, # interpolation order + 1, # interpolation order "vanleer", # limiter "period", # boundary 0.5, # cfl 1.0, # simulation time ) - -pSpace = KitBase.PSpace1D(0.0, 1.0, 100, 1) +pSpace = PSpace1D(0.0, 1.0, 100, 1) vSpace = nothing -property = KitBase.Scalar(0, 1e-6) - +property = Scalar(0, 1e-4) w0 = 1.0 -prim0 = KitBase.conserve_prim(w0) -ib = KitBase.IB(w0, prim0, prim0, w0, prim0, prim0) -ks = KitBase.SolverSet(set, pSpace, vSpace, property, ib, @__DIR__) +prim0 = conserve_prim(w0, property.a) +ib = IB(w0, prim0, prim0, w0, prim0, prim0) +ks = SolverSet(set, pSpace, vSpace, property, ib) ``` The we allocate the data structure needed. ```julia -ctr = OffsetArray{KitBase.ControlVolume1D}(undef, eachindex(ks.pSpace.x)) +ctr, face = init_fvm(ks, ks.ps) for i in eachindex(ctr) - u = sin(2π * ks.pSpace.x[i]) - ctr[i] = KitBase.ControlVolume1D( - ks.pSpace.x[i], - ks.pSpace.dx[i], - u, - KitBase.conserve_prim(u) - ) -end - -face = Array{KitBase.Interface1D}(undef, ks.pSpace.nx+1) -for i = 1:ks.pSpace.nx+1 - face[i] = KitBase.Interface1D(0.0) + ctr[i].w = sin(2π * ks.pSpace.x[i]) # initial condition + ctr[i].prim .= conserve_prim(ctr[i].w) end ``` @@ -54,28 +41,12 @@ The solution algorithm can be processed together with visualization. ```julia t = 0.0 dt = KitBase.timestep(ks, ctr, t) -nt = ks.set.maxTime÷dt |> Int +nt = ks.set.maxTime ÷ dt |> Int anim = @animate for iter = 1:nt - KitBase.reconstruct!(ks, ctr) - - for i in eachindex(face) - face[i].fw = KitBase.flux_gks( - ctr[i-1].w, - ctr[i].w, - ks.gas.μᵣ, - dt, - 0.5 * ctr[i-1].dx, - 0.5 * ctr[i].dx, - ) - end - - for i in 1:ks.pSpace.nx - ctr[i].w += (face[i].fw - face[i+1].fw) / ctr[i].dx - ctr[i].prim .= KitBase.conserve_prim(ctr[i].w) - end - ctr[0].w = ctr[ks.pSpace.nx].w - ctr[ks.pSpace.nx+1].w = ctr[1].w + reconstruct!(ks, ctr) + evolve!(ks, ctr, face, dt) + update!(ks, ctr, face, dt, 0.0) sol = zeros(ks.pSpace.nx) for i in 1:ks.pSpace.nx @@ -87,4 +58,4 @@ end gif(anim, "burgers.gif", fps = 45) ``` -![](./assets/burgers.gif) \ No newline at end of file +![](./assets/burgers.gif)