Syntetic data results:
m = 50, m0 = 50, ef_construction = 30, n = 10000, dim = 128, k = 5
ef_values = [5, 10, 20, 30, 40, 50]
Results on real data (run the code as in the example from Usage):
m = 50, m0 = 50
Dataset | Method | Average recall | Avg calc |
---|---|---|---|
sift10k | baseline | 0.9739 | 246.75 |
sift10k | custom | 0.9780 | 244.53 |
sift1m | baseline | 0.8074 | 420.43 |
sift1m | custom | 0.7943 | 413.52 |
Python based research tool for studying navigable graphs for nearest neighbour search
Using the SIFT dataset:
python navigable-graphs.py --dataset sift
Using synthetic data with 3D vectors:
python navigable-graphs.py --dataset synthetic --K 20 --k 5 --dim 3 --n 500 --nq 100 --ef 20 --M 2