-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProgram.cs
226 lines (188 loc) · 8.68 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
namespace naive_bayes
{
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Text.RegularExpressions;
using System.Threading;
using System.Threading.Tasks;
using Accord.MachineLearning.Bayes;
using Accord.MachineLearning.DecisionTrees;
using Accord.MachineLearning.DecisionTrees.Learning;
using Accord.MachineLearning.VectorMachines.Learning;
using Accord.Statistics.Filters;
using Accord.Statistics.Kernels;
using F23.StringSimilarity;
using TinyCsvParser;
using TinyCsvParser.Mapping;
public class BrandRecord
{
public string Input { get; set; }
public string ClassName { get; set; }
public string SubClassName { get; set; }
}
public class BrandRecordMapping : CsvMapping<BrandRecord>
{
public BrandRecordMapping()
: base()
{
MapProperty(0, x => x.Input);
MapProperty(1, x => x.ClassName);
MapProperty(2, x => x.SubClassName);
}
}
class Vocabulory {
public Vocabulory(IEnumerable<string> input) {
bag.UnionWith(input);
list.AddRange(bag);
for (var i = 0; i < list.Count; i++) {
index.Add(list[i], i);
}
}
private List<string> list = new List<string>();
private Dictionary<string, int> index = new Dictionary<string, int>();
private HashSet<string> bag = new HashSet<string>();
public int Encode(string word) => index[word];
public string Decode(int i) => list[i];
public bool Has(string s) => bag.Contains(s);
public IEnumerable<int> Symbols => Enumerable.Range(0, list.Count);
public int Count => list.Count;
}
class Program
{
static void Main(string[] args)
{
CsvParserOptions csvParserOptions = new CsvParserOptions(true, ';');
BrandRecordMapping csvMapper = new BrandRecordMapping();
CsvParser<BrandRecord> csvParser = new CsvParser<BrandRecord>(csvParserOptions, csvMapper);
Tokenizer tokenizer = new Tokenizer(
new SymbolTokenizer(' ', '.', ',', ';', '`', '+', '[', '?', ']', '*', '\\', ')'),
new RegexFilter(@"\W+"),
new LowercaseFilter(),
new AsciiFoldingFilter(),
// new LengthTokenFilter(len => len > 1),
new EmptyTokenFilter()
);
var tempDataset = csvParser
.ReadFromFile(@"training.csv", Encoding.UTF8)
.Where(x => x.IsValid)
.Select(x => x.Result)
.Select(x => (
words: tokenizer.Process(x.Input).ToArray(),
className: x.ClassName.ToLowerInvariant(),
subClassName: x.SubClassName.ToLowerInvariant()
))
.ToArray();
var dataset = tempDataset
.Concat(tempDataset.Select(row => (
words: tokenizer.Process($"{row.className} {row.subClassName}").ToArray(),
className: row.className,
subClassName: row.subClassName
)))
.ToArray();
// converting string words to integer
var wordsVocab = new Vocabulory(dataset.SelectMany(x => x.words));
var classNames = new Vocabulory(dataset.Select(x => x.className));
var subClassNames = new Vocabulory(dataset.Select(x => x.subClassName));
// subClasses
Dictionary<int, Vocabulory> scopedSubClassNames = new Dictionary<int, Vocabulory>();
foreach (var c in classNames.Symbols) {
var name = classNames.Decode(c);
Vocabulory subClasses = new Vocabulory(dataset.Where(row => row.className == name).Select(row => row.subClassName));
scopedSubClassNames.Add(c, subClasses);
}
const int WORDS_SZ = 10;
const int SINGLE_CLASS_SZ = 2;
const int CLASS_SZ = SINGLE_CLASS_SZ * 2;
const int INPUT_SZ = CLASS_SZ + WORDS_SZ;
int[] exactMatch(Vocabulory v, string[] list) {
int[] arr = new int[SINGLE_CLASS_SZ];
Array.Fill(arr, 0);
var found = list.Where(x => v.Has(x)).Select(x => v.Encode(x)).Take(arr.Length).ToArray();
for (var i = 0; i < found.Length; i++) {
arr[i] = found[i];
}
return arr;
}
int[] makeInputVector((string[] words, string className, string subClassName) row) {
var inArray = new int[INPUT_SZ];
Array.Fill(inArray, 0);
Array.Copy(exactMatch(classNames, row.words), 0, inArray, 0, SINGLE_CLASS_SZ);
Array.Copy(exactMatch(subClassNames, row.words), 0, inArray, SINGLE_CLASS_SZ, SINGLE_CLASS_SZ);
var wordArray = row.words.Select(x => wordsVocab.Encode(x) + 1).ToArray();
var len = Math.Min(wordArray.Length, WORDS_SZ);
for (var i = 0; i < len; i++) {
inArray[i + CLASS_SZ] = wordArray[i];
}
return inArray;
}
// create inputs & outputs
var inputs = dataset
.Select(row => makeInputVector(row))
.ToArray();
var outputs = dataset
.Select(row => classNames.Encode(row.className))
.ToArray();
var learner = new NaiveBayesLearning();
Accord.MachineLearning.Bayes.NaiveBayes nb = learner.Learn(inputs, outputs);
Dictionary<int, int> singleSubClass = new Dictionary<int, int>();
Dictionary<int, Accord.MachineLearning.Bayes.NaiveBayes> subNb = new Dictionary<int, Accord.MachineLearning.Bayes.NaiveBayes>();
foreach (var cn in classNames.Symbols) {
var name = classNames.Decode(cn);
var subClasses = scopedSubClassNames[cn];
if (subClasses.Count == 1) {
singleSubClass.Add(cn, 0);
subNb.Add(cn, null);
continue;
}
var inputs2 = dataset
.Where(x => x.className == name)
.Select(row => makeInputVector(row))
.ToArray();
var outputs2 = dataset
.Where(x => x.className == name)
.Select(row => subClasses.Encode(row.subClassName))
.ToArray();
var learner2 = new NaiveBayesLearning();
subNb.Add(cn, learner2.Learn(inputs2, outputs2));
}
Stopwatch sw = Stopwatch.StartNew();
// run
int okBrand = 0;
int okModel = 0;
foreach (var row in dataset) {
var wordInput = row.words.Select(w => wordsVocab.Encode(w) + 1).ToArray();
var classInput = exactMatch(classNames, row.words);
var subClassInput = exactMatch(subClassNames, row.words);
int[] input = new int[INPUT_SZ];
Array.Fill(input, 0);
Array.Copy(classInput, 0, input, 0, SINGLE_CLASS_SZ);
Array.Copy(subClassInput, 0, input, SINGLE_CLASS_SZ, SINGLE_CLASS_SZ);
Array.Copy(wordInput, 0, input, CLASS_SZ, Math.Min(wordInput.Length, WORDS_SZ));
var res = nb.Decide(input);
// var probs = nb.Probabilities(input);
var className = classNames.Decode(res);
if (row.className == className) Interlocked.Increment(ref okBrand);
int subRes;
if (subNb[res] != null) {
subRes = subNb[res].Decide(input);
}
else {
// single sub-class
subRes = singleSubClass[res];
}
var subClassName = scopedSubClassNames[res].Decode(subRes);
if (row.subClassName == subClassName) Interlocked.Increment(ref okModel);
// if (row.className != className || row.subClassName != subClassName) {
// Console.WriteLine($"{string.Join(" ", row.words)}\tgot {className} {subClassName}\t must be {row.className} {row.subClassName}");
// }
}
sw.Stop();
Console.WriteLine($"Brand: {okBrand / (double) dataset.Length * 100}%");
Console.WriteLine($"Model: {okModel / (double) dataset.Length * 100}%");
Console.WriteLine($"Speed: {sw.Elapsed / dataset.Length}/sample");
}
}
}