-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathssim_features.py
237 lines (206 loc) · 8.58 KB
/
ssim_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import functools
import numpy as np
from scipy.ndimage import uniform_filter
from skimage._shared import utils
from skimage.filters import gaussian
from skimage._shared.utils import _supported_float_type, check_shape_equality, warn
from skimage.util.arraycrop import crop
from skimage.util.dtype import dtype_range
def structural_similarity_features(im1, im2,
*,
win_size=None, gradient=False, data_range=None,
channel_axis=None, multichannel=False,
gaussian_weights=False, full=False, **kwargs):
"""
Compute the mean structural similarity index between two images.
Parameters
----------
im1, im2 : ndarray
Images. Any dimensionality with same shape.
win_size : int or None, optional
The side-length of the sliding window used in comparison. Must be an
odd value. If `gaussian_weights` is True, this is ignored and the
window size will depend on `sigma`.
gradient : bool, optional
If True, also return the gradient with respect to im2.
data_range : float, optional
The data range of the input image (distance between minimum and
maximum possible values). By default, this is estimated from the image
data-type.
channel_axis : int or None, optional
If None, the image is assumed to be a grayscale (single channel) image.
Otherwise, this parameter indicates which axis of the array corresponds
to channels.
.. versionadded:: 0.19
``channel_axis`` was added in 0.19.
multichannel : bool, optional
If True, treat the last dimension of the array as channels. Similarity
calculations are done independently for each channel then averaged.
This argument is deprecated: specify `channel_axis` instead.
gaussian_weights : bool, optional
If True, each patch has its mean and variance spatially weighted by a
normalized Gaussian kernel of width sigma=1.5.
full : bool, optional
If True, also return the full structural similarity image.
Other Parameters
----------------
use_sample_covariance : bool
If True, normalize covariances by N-1 rather than, N where N is the
number of pixels within the sliding window.
K1 : float
Algorithm parameter, K1 (small constant, see [1]_).
K2 : float
Algorithm parameter, K2 (small constant, see [1]_).
sigma : float
Standard deviation for the Gaussian when `gaussian_weights` is True.
Returns
-------
mssim : float
The mean structural similarity index over the image.
grad : ndarray
The gradient of the structural similarity between im1 and im2 [2]_.
This is only returned if `gradient` is set to True.
S : ndarray
The full SSIM image. This is only returned if `full` is set to True.
Notes
-----
To match the implementation of Wang et. al. [1]_, set `gaussian_weights`
to True, `sigma` to 1.5, and `use_sample_covariance` to False.
.. versionchanged:: 0.16
This function was renamed from ``skimage.measure.compare_ssim`` to
``skimage.metrics.structural_similarity``.
References
----------
.. [1] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.
(2004). Image quality assessment: From error visibility to
structural similarity. IEEE Transactions on Image Processing,
13, 600-612.
https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
:DOI:`10.1109/TIP.2003.819861`
.. [2] Avanaki, A. N. (2009). Exact global histogram specification
optimized for structural similarity. Optical Review, 16, 613-621.
:arxiv:`0901.0065`
:DOI:`10.1007/s10043-009-0119-z`
"""
check_shape_equality(im1, im2)
float_type = _supported_float_type(im1.dtype)
if channel_axis is not None:
# loop over channels
args = dict(win_size=win_size,
gradient=gradient,
data_range=data_range,
channel_axis=None,
gaussian_weights=gaussian_weights,
full=full)
args.update(kwargs)
nch = im1.shape[channel_axis]
mssim = np.empty(nch, dtype=float_type)
if gradient:
G = np.empty(im1.shape, dtype=float_type)
if full:
S = np.empty(im1.shape, dtype=float_type)
channel_axis = channel_axis % im1.ndim
_at = functools.partial(utils.slice_at_axis, axis=channel_axis)
for ch in range(nch):
ch_result = structural_similarity(im1[_at(ch)],
im2[_at(ch)], **args)
if gradient and full:
mssim[ch], G[_at(ch)], S[_at(ch)] = ch_result
elif gradient:
mssim[ch], G[_at(ch)] = ch_result
elif full:
mssim[ch], S[_at(ch)] = ch_result
else:
mssim[ch] = ch_result
mssim = mssim.mean()
if gradient and full:
return mssim, G, S
elif gradient:
return mssim, G
elif full:
return mssim, S
else:
return mssim
K1 = kwargs.pop('K1', 0.01)
K2 = kwargs.pop('K2', 0.03)
sigma = kwargs.pop('sigma', 1.5)
if K1 < 0:
raise ValueError("K1 must be positive")
if K2 < 0:
raise ValueError("K2 must be positive")
if sigma < 0:
raise ValueError("sigma must be positive")
use_sample_covariance = kwargs.pop('use_sample_covariance', True)
if gaussian_weights:
# Set to give an 11-tap filter with the default sigma of 1.5 to match
# Wang et. al. 2004.
truncate = 3.5
if win_size is None:
if gaussian_weights:
# set win_size used by crop to match the filter size
r = int(truncate * sigma + 0.5) # radius as in ndimage
win_size = 2 * r + 1
else:
win_size = 7 # backwards compatibility
if np.any((np.asarray(im1.shape) - win_size) < 0):
raise ValueError(
'win_size exceeds image extent. '
'Either ensure that your images are '
'at least 7x7; or pass win_size explicitly '
'in the function call, with an odd value '
'less than or equal to the smaller side of your '
'images. If your images are multichannel '
'(with color channels), set channel_axis to '
'the axis number corresponding to the channels.')
if not (win_size % 2 == 1):
raise ValueError('Window size must be odd.')
if data_range is None:
if im1.dtype != im2.dtype:
warn("Inputs have mismatched dtype. Setting data_range based on "
"im1.dtype.", stacklevel=2)
dmin, dmax = dtype_range[im1.dtype.type]
data_range = dmax - dmin
ndim = im1.ndim
if gaussian_weights:
filter_func = gaussian
filter_args = {'sigma': sigma, 'truncate': truncate, 'mode': 'reflect'}
else:
filter_func = uniform_filter
filter_args = {'size': win_size}
# ndimage filters need floating point data
im1 = im1.astype(float_type, copy=False)
im2 = im2.astype(float_type, copy=False)
NP = win_size ** ndim
# filter has already normalized by NP
if use_sample_covariance:
cov_norm = NP / (NP - 1) # sample covariance
else:
cov_norm = 1.0 # population covariance to match Wang et. al. 2004
# compute (weighted) means
ux = filter_func(im1, **filter_args)
uy = filter_func(im2, **filter_args)
# compute (weighted) variances and covariances
uxx = filter_func(im1 * im1, **filter_args)
uyy = filter_func(im2 * im2, **filter_args)
uxy = filter_func(im1 * im2, **filter_args)
vx = cov_norm * (uxx - ux * ux)
vy = cov_norm * (uyy - uy * uy)
vxy = cov_norm * (uxy - ux * uy)
R = data_range
C1 = (K1 * R) ** 2
C2 = (K2 * R) ** 2
A1, A2, B1, B2 = ((2 * ux * uy + C1,
2 * vxy + C2,
ux ** 2 + uy ** 2 + C1,
vx + vy + C2))
D = B1 * B2
S = (A1 * A2) / D
# to avoid edge effects will ignore filter radius strip around edges
pad = (win_size - 1) // 2
prod = vx * vy
prod[np.where(prod < 0)] = 0 # guard against divide by zero
L = (2 * ux * uy + C1) / (ux ** 2 + uy ** 2 + C1)
C = (2 * np.sqrt(prod) + C2) / (vx + vy + C2)
# vxy[np.where(vxy < 0)] = 0 # guard against sqrt of negative
S = (vxy + C2/2) / (np.sqrt(prod) + C2/2)
return np.mean(L), np.mean(C), np.mean(S)