-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathCALPHAD_energies.py
569 lines (477 loc) · 18.3 KB
/
CALPHAD_energies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# -*- coding: utf-8 -*-
# Gibbs free energy expressions for IN625 from ternary CALPHAD Database
#
# This script extracts relevant thermodynamic functions necessary for the
# phase-field model of solid-state transformations in additively manufactured
# superalloy 625, represented as a ternary (Cr-Nb-Ni) with γ, δ, μ, and Laves
# phases competing. The thermodynamic database was prepared by U. Kattner after
# Du, Liu, Chang, and Yang (2005):
#
# @Article{Du2005,
# Title = {A thermodynamic modeling of the Cr–Nb–Ni system },
# Author = {Yong Du and Shuhong Liu and Y.A. Chang and Ying Yang},
# Journal = {Calphad},
# Year = {2005},
# Volume = {29},
# Number = {2},
# Pages = {140 - 148},
# Doi = {10.1016/j.calphad.2005.06.001}
# }
#
# This database models the phases of interest as follows:
# - γ as $\mathrm{(Cr, Nb, Ni)}$
# - δ as $\mathrm{(\mathbf{Nb}, Ni)_1(Cr, Nb, \mathbf{Ni})_3}$
# - Laves as $\mathrm{(\mathbf{Cr}, Nb, Ni)_2(Cr, \mathbf{Nb})_1}$
#
# The phase field model requires Gibbs free energies as functions of system
# compositions $x_\mathrm{Cr}$, $x_\mathrm{Nb}$, $x_\mathrm{Ni}$. The CALPHAD
# database represents these energies as functions of sublattice compositions
# $y$ in each phase. To avoid solving for internal phase equilibrium at each
# point in the simulation, approximations have been made to allow the following
# one-to-one mappings between $x$ and $y$:
#
# - γ: no changes necessary
# * $y_\mathrm{Cr}' = x_\mathrm{Cr}$
# * $y_\mathrm{Nb}' = x_\mathrm{Nb}$
# * $y_\mathrm{Ni}' = x_\mathrm{Ni}$
#
# - δ: eliminate Nb from the second (Ni) sublattice,
# $\mathrm{(\mathbf{Nb}, Ni)_1(Cr, \mathbf{Ni})_3}$
# * $y_\mathrm{Nb}' = 4x_\mathrm{Nb}$
# * $y_\mathrm{Ni}' = 1 - 4x_\mathrm{Nb}$
# * $y_\mathrm{Cr}'' = \frac{4}{3}x_\mathrm{Cr}$
# * $y_\mathrm{Ni}'' = 1 - \frac{4}{3}x_\mathrm{Cr}$
# * Constraints: $x_\mathrm{Nb}\leq\frac{1}{4}$
# $x_\mathrm{Cr}\leq\frac{3}{4}$
#
# - Laves: eliminate Nb from the first (Cr) sublattice,
# $\mathrm{(\mathbf{Cr}, Ni)_2(Cr, \mathbf{Nb})_1}$
# * $y_\mathrm{Cr}' = 1 - \frac{3}{2}x_\mathrm{Ni}$
# * $y_\mathrm{Ni}' = \frac{3}{2}x_\mathrm{Ni}$
# * $y_\mathrm{Cr}'' = 1 - 3x_\mathrm{Nb}$
# * $y_\mathrm{Nb}'' = 3x_\mathrm{Nb}$
# * Constraints: $0\leq x_\mathrm{Ni}\leq\frac{2}{3}$
# $0\leq x_\mathrm{Nb}\leq\frac{1}{3}$
# Numerical and CAS libraries
import numpy as np
from sympy import Eq, Matrix, S
from sympy import diff, expand, factor, fraction, symbols
from sympy.abc import L, r, x, y, z
from sympy.core.numbers import pi
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.trigonometric import tanh
from sympy.solvers import solve, solve_linear_system
# I/O libraries
from sympy.parsing.sympy_parser import parse_expr
from sympy import init_printing, pprint
from sympy.utilities.codegen import codegen
init_printing()
# Thermodynamics libraries
from pycalphad import Database, calculate, Model
from pycalphad import Database, Model
# Global variables and shared functions
from constants import *
# Declare phase-field functions for consistent reuse
interpolator = x ** 3 * (6.0 * x ** 2 - 15.0 * x + 10.0)
dinterpdx = 30.0 * x ** 2 * (1.0 - x) ** 2
interfaceProfile = (1 - tanh(z)) / 2
# Declare sublattice variables used in Pycalphad expressions
XCR, XNB = symbols("XCR XNB")
XNI = 1 - XCR - XNB
xCr0 = 0.30
xNb0 = 0.02
XEQ = {XCR: xe_gam_Cr, XNB: xe_gam_Nb}
X0 = {XCR: xCr0, XNB: xNb0}
# Read CALPHAD database from disk, specify phases and elements of interest
tdb = Database("Du_Cr-Nb-Ni_simple.tdb")
elements = ["CR", "NB", "NI"]
species = list(set([i for c in tdb.phases["FCC_A1"].constituents for i in c]))
model = Model(tdb, species, "FCC_A1")
g_gamma = parse_expr(str(model.ast))
species = list(set([i for c in tdb.phases["D0A_NBNI3"].constituents for i in c]))
model = Model(tdb, species, "D0A_NBNI3")
g_delta = parse_expr(str(model.ast))
species = list(set([i for c in tdb.phases["C14_LAVES"].constituents for i in c]))
model = Model(tdb, species, "C14_LAVES")
g_laves = parse_expr(str(model.ast))
# Make sublattice -> system substitutions
g_gamma = inVm * g_gamma.subs(
{
symbols("FCC_A10CR"): XCR,
symbols("FCC_A10NB"): XNB,
symbols("FCC_A10NI"): XNI,
symbols("FCC_A11VA"): 1,
symbols("T"): temp,
}
)
g_delta = inVm * g_delta.subs(
{
symbols("D0A_NBNI30NB"): 4 * XNB,
symbols("D0A_NBNI30NI"): 1 - 4 * XNB,
symbols("D0A_NBNI31CR"): fr4by3 * XCR,
symbols("D0A_NBNI31NI"): 1 - fr4by3 * XCR,
symbols("T"): temp,
}
)
g_laves = inVm * g_laves.subs(
{
symbols("C14_LAVES0CR"): 1 - fr3by2 * XNI,
symbols("C14_LAVES0NI"): fr3by2 * XNI,
symbols("C14_LAVES1CR"): 1 - 3 * XNB,
symbols("C14_LAVES1NB"): 3 * XNB,
symbols("T"): temp,
}
)
# Extract thermodynamic properties from CALPHAD landscape
g_dGgam_dxCr = diff(g_gamma, XCR)
g_dGgam_dxNb = diff(g_gamma, XNB)
mu_Cr = Vm * (g_gamma - XNB * g_dGgam_dxNb + (1 - XCR) * g_dGgam_dxCr)
mu_Nb = Vm * (g_gamma + (1 - XNB) * g_dGgam_dxNb - XCR * g_dGgam_dxCr)
mu_Ni = Vm * (g_gamma - XNB * g_dGgam_dxNb - XCR * g_dGgam_dxCr)
g_dGdel_dxCr = diff(g_delta, XCR)
g_dGdel_dxNb = diff(g_delta, XNB)
g_dGlav_dxCr = diff(g_laves, XCR)
g_dGlav_dxNb = diff(g_laves, XNB)
# Curvatures of the CALPHAD Free Energy Surfaces
g_d2Ggam_dxCrCr = diff(g_gamma, XCR, XCR)
g_d2Ggam_dxCrNb = diff(g_gamma, XCR, XNB)
g_d2Ggam_dxNbCr = diff(g_gamma, XNB, XCR)
g_d2Ggam_dxNbNb = diff(g_gamma, XNB, XNB)
g_d2Gdel_dxCrCr = diff(g_delta, XCR, XCR)
g_d2Gdel_dxCrNb = diff(g_delta, XCR, XNB)
g_d2Gdel_dxNbCr = diff(g_delta, XNB, XCR)
g_d2Gdel_dxNbNb = diff(g_delta, XNB, XNB)
g_d2Glav_dxCrCr = diff(g_laves, XCR, XCR)
g_d2Glav_dxCrNb = diff(g_laves, XCR, XNB)
g_d2Glav_dxNbCr = diff(g_laves, XNB, XCR)
g_d2Glav_dxNbNb = diff(g_laves, XNB, XNB)
# Derivatives of μ from SymPy
## N.B.: Since Ni is dependent, duX_dxNi ≡ 0
duCr_dxCr = diff(mu_Cr, XCR)
duCr_dxNb = diff(mu_Cr, XNB)
duNb_dxCr = diff(mu_Nb, XCR)
duNb_dxNb = diff(mu_Nb, XNB)
duNi_dxCr = diff(mu_Ni, XCR)
duNi_dxNb = diff(mu_Ni, XNB)
# Generate paraboloid expressions (2nd-order Taylor series approximations)
# Curvatures
PC_gam_CrCr = g_d2Ggam_dxCrCr.subs(XEQ)
PC_gam_CrNb = g_d2Ggam_dxCrNb.subs(XEQ)
PC_gam_NbNb = g_d2Ggam_dxNbNb.subs(XEQ)
PC_del_CrCr = g_d2Gdel_dxCrCr.subs({XCR: xe_del_Cr, XNB: xe_del_Nb})
PC_del_CrNb = g_d2Gdel_dxCrNb.subs({XCR: xe_del_Cr, XNB: xe_del_Nb})
PC_del_NbNb = g_d2Gdel_dxNbNb.subs({XCR: xe_del_Cr, XNB: xe_del_Nb})
PC_lav_CrCr = g_d2Glav_dxCrCr.subs({XCR: xe_lav_Cr, XNB: xe_lav_Nb})
PC_lav_CrNb = g_d2Glav_dxCrNb.subs({XCR: xe_lav_Cr, XNB: xe_lav_Nb})
PC_lav_NbNb = g_d2Glav_dxNbNb.subs({XCR: xe_lav_Cr, XNB: xe_lav_Nb})
# Expressions
p_gamma = (
fr1by2 * PC_gam_CrCr * (XCR - xe_gam_Cr) ** 2
+ PC_gam_CrNb * (XCR - xe_gam_Cr) * (XNB - xe_gam_Nb)
+ fr1by2 * PC_gam_NbNb * (XNB - xe_gam_Nb) ** 2
)
p_delta = (
fr1by2 * PC_del_CrCr * (XCR - xe_del_Cr) ** 2
+ PC_del_CrNb * (XCR - xe_del_Cr) * (XNB - xe_del_Nb)
+ fr1by2 * PC_del_NbNb * (XNB - xe_del_Nb) ** 2
)
p_laves = (
fr1by2 * PC_lav_CrCr * (XCR - xe_lav_Cr) ** 2
+ PC_lav_CrNb * (XCR - xe_lav_Cr) * (XNB - xe_lav_Nb)
+ fr1by2 * PC_lav_NbNb * (XNB - xe_lav_Nb) ** 2
)
# Generate first derivatives of paraboloid landscape
p_dGgam_dxCr = diff(p_gamma, XCR)
p_dGgam_dxNb = diff(p_gamma, XNB)
p_dGdel_dxCr = diff(p_delta, XCR)
p_dGdel_dxNb = diff(p_delta, XNB)
p_dGlav_dxCr = diff(p_laves, XCR)
p_dGlav_dxNb = diff(p_laves, XNB)
# Generate second derivatives of paraboloid landscape
p_d2Ggam_dxCrCr = diff(p_gamma, XCR, XCR)
p_d2Ggam_dxCrNb = diff(p_gamma, XCR, XNB)
p_d2Ggam_dxNbCr = diff(p_gamma, XNB, XCR)
p_d2Ggam_dxNbNb = diff(p_gamma, XNB, XNB)
p_d2Gdel_dxCrCr = diff(p_delta, XCR, XCR)
p_d2Gdel_dxCrNb = diff(p_delta, XCR, XNB)
p_d2Gdel_dxNbCr = diff(p_delta, XNB, XCR)
p_d2Gdel_dxNbNb = diff(p_delta, XNB, XNB)
p_d2Glav_dxCrCr = diff(p_laves, XCR, XCR)
p_d2Glav_dxCrNb = diff(p_laves, XCR, XNB)
p_d2Glav_dxNbCr = diff(p_laves, XNB, XCR)
p_d2Glav_dxNbNb = diff(p_laves, XNB, XNB)
# Chemical potentials of paraboloid landscape
p_mu_Cr = Vm * (p_gamma - XNB * p_dGgam_dxNb + (1 - XCR) * p_dGgam_dxCr)
p_mu_Nb = Vm * (p_gamma + (1 - XNB) * p_dGgam_dxNb - XCR * p_dGgam_dxCr)
p_mu_Ni = Vm * (p_gamma - XNB * p_dGgam_dxNb - XCR * p_dGgam_dxCr)
# Derivatives of μ from SymPy
## N.B.: Since Ni is dependent, duX_dxNi ≡ 0
p_duCr_dxCr = diff(p_mu_Cr, XCR)
p_duCr_dxNb = diff(p_mu_Cr, XNB)
p_duNb_dxCr = diff(p_mu_Nb, XCR)
p_duNb_dxNb = diff(p_mu_Nb, XNB)
p_duNi_dxCr = diff(p_mu_Ni, XCR)
p_duNi_dxNb = diff(p_mu_Ni, XNB)
# === Diffusivity ===
# *** Activation Energies in FCC Ni [J/mol] ***
# Motion of species (1) in pure (2), transcribed from `Ni-Nb-Cr_fcc_mob.tdb`
## Ref: TKR5p286, TKR5p316
Q_Cr_Cr = -235000 - 82.0 * temp
Q_Cr_Nb = -287000 - 64.4 * temp
Q_Cr_Ni = -287000 - 64.4 * temp
Q_Cr_CrNi = -68000
Q_Nb_Cr = -260955 + RT * log(1.1300e-4)
Q_Nb_Nb = -102570 + RT * log(1.2200e-5)
Q_Nb_Ni = -260955 + RT * log(1.1300e-4)
Q_Nb_NbNi = -332498
Q_Ni_Cr = -235000 - 82.0 * temp
Q_Ni_Nb = -287060 + RT * log(1.0e-4)
Q_Ni_Ni = -287000 - 69.8 * temp
Q_Ni_CrNi = -81000
Q_Ni_NbNi = -4207044
Q_Cr = XCR * Q_Cr_Cr + XNB * Q_Cr_Nb + XNI * Q_Cr_Ni + XCR * XNI * Q_Cr_CrNi
Q_Nb = XCR * Q_Nb_Cr + XNB * Q_Nb_Nb + XNI * Q_Nb_Ni + XNB * XNI * Q_Nb_NbNi
Q_Ni = XCR * Q_Ni_Cr + XNB * Q_Ni_Nb + XNI * Q_Ni_Ni + XCR * XNI * Q_Ni_CrNi + XNB * XNI * Q_Ni_NbNi
# *** Atomic Mobilities in FCC Ni [m²mol/Js due to unit prefactor (m²/s)] ***
## Ref: TKR5p286, TKR5p316
M_Cr = exp(Q_Cr / RT) / RT
M_Nb = exp(Q_Nb / RT) / RT
M_Ni = exp(Q_Ni / RT) / RT
# For DICTRA comparisons ("L0kj") -- Lattice Frame
L0_Cr = XCR * M_Cr
L0_Nb = XNB * M_Nb
L0_Ni = XNI * M_Ni
L1_CrCr = (1 - XCR) * L0_Cr
L1_CrNb = - XCR * L0_Nb
L1_CrNi = - XCR * L0_Ni
L1_NbCr = - XNB * L0_Cr
L1_NbNb = (1 - XNB) * L0_Nb
L1_NbNi = - XNB * L0_Ni
L1_NiCr = - XNI * L0_Cr
L1_NiNb = - XNI * L0_Nb
L1_NiNi = (1 - XNI) * L0_Ni
## Ref: TKR5p340
# D from CALPHAD landscape
D_CrCr = L1_CrCr * duCr_dxCr + L1_CrNb * duNb_dxCr + L1_CrNi * duNi_dxCr
D_CrNb = L1_CrCr * duCr_dxNb + L1_CrNb * duNb_dxNb + L1_CrNi * duNi_dxNb
D_NbCr = L1_NbCr * duCr_dxCr + L1_NbNb * duNb_dxCr + L1_NbNi * duNi_dxCr
D_NbNb = L1_NbCr * duCr_dxNb + L1_NbNb * duNb_dxNb + L1_NbNi * duNi_dxNb
DCC = D_CrCr.subs(X0)
DCN = D_CrNb.subs(X0)
DNC = D_NbCr.subs(X0)
DNN = D_NbNb.subs(X0)
# D from paraboloid landscape
p_D_CrCr = L1_CrCr * p_duCr_dxCr + L1_CrNb * p_duNb_dxCr + L1_CrNi * p_duNi_dxCr
p_D_CrNb = L1_CrCr * p_duCr_dxNb + L1_CrNb * p_duNb_dxNb + L1_CrNi * p_duNi_dxNb
p_D_NbCr = L1_NbCr * p_duCr_dxCr + L1_NbNb * p_duNb_dxCr + L1_NbNi * p_duNi_dxCr
p_D_NbNb = L1_NbCr * p_duCr_dxNb + L1_NbNb * p_duNb_dxNb + L1_NbNi * p_duNi_dxNb
pDCC = p_D_CrCr.subs(X0)
pDCN = p_D_CrNb.subs(X0)
pDNC = p_D_NbCr.subs(X0)
pDNN = p_D_NbNb.subs(X0)
print("Reduced Diffusivity at ({0}, {1}):\n".format(xCr0, xNb0))
print("⎡{0:13.3g} {1:13.3g}⎤ m²/s".format(DCC, DCN))
print("⎢ ⎥")
print("⎣{0:13.3g} {1:13.3g}⎦".format(DNC, DNN))
print("")
print("Paraboloid Diffusivity at ({0}, {1}):\n".format(xCr0, xNb0))
print("⎡{0:13.3g} {1:13.3g}⎤ m²/s".format(pDCC, pDCN))
print("⎢ ⎥")
print("⎣{0:13.3g} {1:13.3g}⎦".format(pDNC, pDNN))
print("")
# ========= FICTITIOUS COMPOSITIONS ==========
# Derivation: TKR4p181
gamCr, gamNb = symbols("gamCr, gamNb")
delCr, delNb = symbols("delCr, delNb")
lavCr, lavNb = symbols("lavCr, lavNb")
pGam, pDel, pLav = symbols("pGam, pDel, pLav")
ficGdCr = p_dGgam_dxCr.subs({XCR: gamCr, XNB: gamNb})
ficGdNb = p_dGgam_dxNb.subs({XCR: gamCr, XNB: gamNb})
ficDdCr = p_dGdel_dxCr.subs({XCR: delCr, XNB: delNb})
ficDdNb = p_dGdel_dxNb.subs({XCR: delCr, XNB: delNb})
ficLdCr = p_dGlav_dxCr.subs({XCR: lavCr, XNB: lavNb})
ficLdNb = p_dGlav_dxNb.subs({XCR: lavCr, XNB: lavNb})
ficEqns = (
XCR - pGam * gamCr - pDel * delCr - pLav * lavCr,
XNB - pGam * gamNb - pDel * delNb - pLav * lavNb,
ficGdCr - ficDdCr,
ficGdNb - ficDdNb,
ficGdCr - ficLdCr,
ficGdNb - ficLdNb,
)
ficVars = (gamCr, gamNb, delCr, delNb, lavCr, lavNb)
fictitious = solve(ficEqns, ficVars, dict=True)
# Note: denominator is the determinant, identical by
# definition. So, we separate it to save some FLOPs.
fict_gam_Cr = factor(expand(fictitious[0][gamCr]))
fict_gam_Nb = factor(expand(fictitious[0][gamNb]))
fict_del_Cr = factor(expand(fictitious[0][delCr]))
fict_del_Nb = factor(expand(fictitious[0][delNb]))
fict_lav_Cr = factor(expand(fictitious[0][lavCr]))
fict_lav_Nb = factor(expand(fictitious[0][lavNb]))
# ============ COMPOSITION SHIFTS ============
## Ref: TKR5p219
r_del, r_lav = symbols("r_del, r_lav")
GaCrCr = p_d2Ggam_dxCrCr
GaCrNb = p_d2Ggam_dxCrNb
GaNbNb = p_d2Ggam_dxNbNb
GbCrCr = p_d2Gdel_dxCrCr
GbCrNb = p_d2Gdel_dxCrNb
GbNbNb = p_d2Gdel_dxNbNb
GgCrCr = p_d2Glav_dxCrCr
GgCrNb = p_d2Glav_dxCrNb
GgNbNb = p_d2Glav_dxNbNb
DaCrCr = xe_gam_Cr * GaCrCr
DaCrNb = xe_gam_Cr * GaCrNb
DaNbCr = xe_gam_Nb * GaCrNb
DaNbNb = xe_gam_Nb * GaNbNb
DbCrCr = xe_del_Cr * GbCrCr
DbCrNb = xe_del_Cr * GbCrNb
DbNbCr = xe_del_Nb * GbCrNb
DbNbNb = xe_del_Nb * GbNbNb
DgCrCr = xe_lav_Cr * GgCrCr
DgCrNb = xe_lav_Cr * GgCrNb
DgNbCr = xe_lav_Nb * GgCrNb
DgNbNb = xe_lav_Nb * GgNbNb
# Three-Component Points: Gamma-Delta-Laves Equilibrium with Curvature
A = Matrix(
[
[GaCrCr, GaCrNb, -GbCrCr, -GbCrNb, 0, 0],
[GaCrNb, GaNbNb, -GbCrNb, -GbNbNb, 0, 0],
[GaCrCr, GaCrNb, 0, 0, -GgCrCr, -GgCrNb],
[GaCrNb, GaNbNb, 0, 0, -GgCrNb, -GgNbNb],
[DaCrCr + DaNbCr, DaCrNb + DaNbNb, -DbCrCr - DbNbCr, -DbCrNb - DbNbNb, 0, 0],
[DaCrCr + DaNbCr, DaCrNb + DaNbNb, 0, 0, -DgCrCr - DgNbCr, -DgCrNb - DgNbNb],
]
)
br = Matrix([[0], [0], [0], [0], [-2 * s_delta / r_del], [-2 * s_laves / r_lav]])
xr = A.cholesky_solve(br)
dx_r_gam_Cr = xr[0]
dx_r_gam_Nb = xr[1]
dx_r_del_Cr = xr[2]
dx_r_del_Nb = xr[3]
dx_r_lav_Cr = xr[4]
dx_r_lav_Nb = xr[5]
# Define lever rule equations
## Ref: TKR4p161, 172; TKR5p266, 272, 293
xo, yo = symbols("xo yo")
xb, yb = symbols("xb yb")
xc, yc = symbols("xc yc")
xd, yd = symbols("xd yd")
levers = solve_linear_system(
Matrix(
((yo - yb, xb - xo, xb * yo - xo * yb), (yc - yd, xd - xc, xd * yc - xc * yd))
),
x,
y,
)
def draw_bisector(weightA, weightB):
bNb = (weightA * xe_del_Nb + weightB * xe_lav_Nb) / (weightA + weightB)
bCr = (weightA * xe_del_Cr + weightB * xe_lav_Cr) / (weightA + weightB)
xPrime = [simX(xe_gam_Nb, xe_gam_Cr), simX(bNb, bCr)]
yPrime = [simY(xe_gam_Cr), simY(bCr)]
return xPrime, yPrime
# === Export C source code ===
codegen(
[ # Interpolator
("p", interpolator),
("pPrime", dinterpdx),
("interface_profile", interfaceProfile),
# temperature
("kT", 1.380649e-23 * temp),
("RT", 8.314468 * temp),
("Vm", Vm),
# Equilibrium Compositions
("xe_gam_Cr", xe_gam_Cr),
("xe_gam_Nb", xe_gam_Nb),
("xe_del_Cr", xe_del_Cr),
("xe_del_Nb", xe_del_Nb),
("xe_lav_Cr", xe_lav_Cr),
("xe_lav_Nb", xe_lav_Nb),
# Matrix composition range
("matrix_min_Cr", matrixMinCr),
("matrix_max_Cr", matrixMaxCr),
("matrix_min_Nb", matrixMinNb),
("matrix_max_Nb", matrixMaxNb),
# Enriched composition range
("enrich_min_Cr", enrichMinCr),
("enrich_max_Cr", enrichMaxCr),
("enrich_min_Nb", enrichMinNb),
("enrich_max_Nb", enrichMaxNb),
# Curvature-Corrected Compositions
("xr_gam_Cr", xe_gam_Cr + dx_r_gam_Cr),
("xr_gam_Nb", xe_gam_Nb + dx_r_gam_Nb),
("xr_del_Cr", xe_del_Cr + dx_r_del_Cr),
("xr_del_Nb", xe_del_Nb + dx_r_del_Nb),
("xr_lav_Cr", xe_lav_Cr + dx_r_lav_Cr),
("xr_lav_Nb", xe_lav_Nb + dx_r_lav_Nb),
# Fictitious compositions
("fict_gam_Cr", fict_gam_Cr),
("fict_gam_Nb", fict_gam_Nb),
("fict_del_Cr", fict_del_Cr),
("fict_del_Nb", fict_del_Nb),
("fict_lav_Cr", fict_lav_Cr),
("fict_lav_Nb", fict_lav_Nb),
# Interfacial energies
("s_delta", s_delta),
("s_laves", s_laves),
# Gibbs energies
("GCAL_gam", g_gamma),
("GCAL_del", g_delta),
("GCAL_lav", g_laves),
("g_gam", p_gamma),
("g_del", p_delta),
("g_lav", p_laves),
# First derivatives
("dGCAL_gam_dxCr", g_dGgam_dxCr),
("dGCAL_gam_dxNb", g_dGgam_dxNb),
("dGCAL_del_dxCr", g_dGdel_dxCr),
("dGCAL_del_dxNb", g_dGdel_dxNb),
("dGCAL_lav_dxCr", g_dGlav_dxCr),
("dGCAL_lav_dxNb", g_dGlav_dxNb),
#
("dg_gam_dxCr", p_dGgam_dxCr),
("dg_gam_dxNb", p_dGgam_dxNb),
("dg_del_dxCr", p_dGdel_dxCr),
("dg_del_dxNb", p_dGdel_dxNb),
("dg_lav_dxCr", p_dGlav_dxCr),
("dg_lav_dxNb", p_dGlav_dxNb),
# Second derivatives
("d2GCAL_gam_dxCrCr", g_d2Ggam_dxCrCr),
("d2GCAL_gam_dxCrNb", g_d2Ggam_dxCrNb),
("d2GCAL_gam_dxNbCr", g_d2Ggam_dxNbCr),
("d2GCAL_gam_dxNbNb", g_d2Ggam_dxNbNb),
("d2GCAL_del_dxCrCr", g_d2Gdel_dxCrCr),
("d2GCAL_del_dxCrNb", g_d2Gdel_dxCrNb),
("d2GCAL_del_dxNbCr", g_d2Gdel_dxNbCr),
("d2GCAL_del_dxNbNb", g_d2Gdel_dxNbNb),
("d2GCAL_lav_dxCrCr", g_d2Glav_dxCrCr),
("d2GCAL_lav_dxCrNb", g_d2Glav_dxCrNb),
("d2GCAL_lav_dxNbCr", g_d2Glav_dxNbCr),
("d2GCAL_lav_dxNbNb", g_d2Glav_dxNbNb),
#
("d2g_gam_dxCrCr", p_d2Ggam_dxCrCr),
("d2g_gam_dxCrNb", p_d2Ggam_dxCrNb),
("d2g_gam_dxNbCr", p_d2Ggam_dxNbCr),
("d2g_gam_dxNbNb", p_d2Ggam_dxNbNb),
("d2g_del_dxCrCr", p_d2Gdel_dxCrCr),
("d2g_del_dxCrNb", p_d2Gdel_dxCrNb),
("d2g_del_dxNbCr", p_d2Gdel_dxNbCr),
("d2g_del_dxNbNb", p_d2Gdel_dxNbNb),
("d2g_lav_dxCrCr", p_d2Glav_dxCrCr),
("d2g_lav_dxCrNb", p_d2Glav_dxCrNb),
("d2g_lav_dxNbCr", p_d2Glav_dxNbCr),
("d2g_lav_dxNbNb", p_d2Glav_dxNbNb),
# Chemical Potentials
("mu_Cr", mu_Cr),
("mu_Nb", mu_Nb),
("mu_Ni", mu_Ni),
# Diffusivities
("D_CrCr", p_D_CrCr), ("D_CrNb", p_D_CrNb),
("D_NbCr", p_D_NbCr), ("D_NbNb", p_D_NbNb)
],
language="C",
prefix="parabola625",
project="PrecipitateAging",
to_files=True,
)